K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 10 2019

\(\left\{{}\begin{matrix}-\frac{b}{2a}=\frac{3}{2}\\\frac{4ac-b^2}{4a}=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4ac-b^2=a\end{matrix}\right.\) \(\Rightarrow4ac-9a^2=a\Rightarrow c=\frac{9a+1}{4}\)

Mặt khác theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=3\\x_1x_2=\frac{c}{a}=\frac{9a+1}{4a}\end{matrix}\right.\)

\(x_1^3+x_2^3=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=9\)

\(\Leftrightarrow27-9\left(\frac{9a+1}{4a}\right)=9\)

\(\Leftrightarrow12a-9a-1=4a\Rightarrow a=-1\)

\(\Rightarrow b=3\) ; \(c=-2\)

\(P=6\)

6 tháng 7 2018

Đáp án D

7 tháng 2 2017

Đáp án C

Từ giả thiết, ta có hệ:

− b 2 a = − 2 4 a − 2 b + c = 5 a + b + c = − 1 ⇔ a = − 2 3 ; b = − 8 3 ; c = 7 3

⇒ S = a 2 + b 2 + c 2 = 13

NV
5 tháng 11 2019

\(\left\{{}\begin{matrix}-\frac{b}{2a}=\frac{3}{2}\\\frac{4ac-b^2}{4a}=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4ac-b^2=a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4ac-9a^2=a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4c-9a=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\c=\frac{9a+1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=3\\x_1x_2=\frac{c}{a}=\frac{9a+1}{4a}\end{matrix}\right.\)

Ta có \(x_1^3+x_2^3=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=9\)

\(\Leftrightarrow27-9\left(\frac{9a+1}{4a}\right)=9\)

\(\Rightarrow a=-1\Rightarrow\left\{{}\begin{matrix}b=3\\c=-2\end{matrix}\right.\) \(\Rightarrow P=6\)

26 tháng 8 2017

Đáp án D

17 tháng 9 2017

Đáp án A