K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Đáp án là C 

I.Sai ví dụ hàm số y = x 3  đồng biến trên

(−¥; +¥) nhưng y' ³  0, "x Î (−¥; +¥

II.Đúng

III.Đúng

29 tháng 10 2019

Chọn đáp án B.

15 tháng 7 2018

Đáp án D

Định lí: “Nếu hàm số y = f x  liên tục trên a ; b  và f a . f b < 0  thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho f c = 0 ”.

Mệnh đề 1: SAI ở giả thiết (a;b).

Mệnh đề 2: Nếu hàm số y=f(x) liên tục trên  a ; b

và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho c hay  f x = 0 là nghiệm của phương trình f(x)=0 nên mệnh đề 2 ĐÚNG.

Mệnh đề 3: Nếu hàm số y=f(x) liên tục, đơn điệu trên a ; b và f a . f b < 0  thì đồ thị hàm số y=f(x) cắt trục Ox tại duy nhất một điểm thuộc khoảng (a;b) nên f(x)=0 có nghiệm duy nhất trên (a;b). Do đó mệnh đề 3 ĐÚNG

27 tháng 5 2018

Đáp án A

Phương pháp:

Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.

Cách giải:

*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và  f c 2

*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số  y = x 3

*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.

Chú ý khi giải:

HS thường nhầm lẫn:

- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.

- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.

7 tháng 5 2018

Chọn C.

Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.

Cách giải:

7 tháng 4 2018
28 tháng 6 2019

Chọn đáp án B

Ta thấy hàm số y = a x  đồng biến trên ℝ  nên a >1; hàm số y = log b x  nghịch biến trên 0 ; + ∞  nên 0 <b <1

18 tháng 2 2017

Đáp án B

Ta có hàm số y = b x ; y = c x đồng biến, hàm số y = a x  nghịch biến nên  a < 1 ; b , c > 1

Thay x = 10 , ta có  b 10 > c 10 ⇒ b > c

30 tháng 5 2017

Ta vẽ đường thẳng x = 1 cắt các đồ thi hàm số đã cho tại tung độ lần lượt a; b; c

Vậy a < b < c. Chọn B