K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)

\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)

Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)

Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)

a) \(P=1957\)

b) \(S=19.\)

26 tháng 8 2019

Điều kiện xác định: x ≠ 0 .

Đặt  t = x + 1 x ⇒ t 2 − 2 = x 2 + 1 x 2 ≥ 2 ⇒ t ≥ 2 ⇔ t ≥ 2 t ≤ − 2

Phương trình đã cho trở thành  2 t 2 − 2 − 3 t − 2 m + 1 = 0

⇔ 2 t 2 − 3 t − 2 m − 3 = 0 ⇔ 2 t 2 − 3 t − 3 = 2 m      ( 1 )

Xét hàm số y = f ( t ) = 2 t 2 − 3 t − 3 có bảng biến thiên:

(1) Có nghiệm t thỏa mãn t ≥ 2 t ≤ − 2     k h i    2 m ≥ − 1 2 m ≥ 11 ⇔ m ≥ − 1 2 ⇒ S = − 1 2 ; + ∞

Vậy T = 3

Đáp án cần chọn là: D

3 tháng 7 2019

Đặt x + 1 t = t , t ≥ 2  khi đó phương trình trở thành 2 t 2 − 3 t − 5 m − 3 = 0    ( * )

Phương trình  2 x 2 + 1 x 2 - 3 x + 1 x - 5 m + 1 = 0 có nghiệm khi và chỉ khi phương trình (*) có nghiệm t thỏa mãn  t ≥ 2

Số nghiệm của phương trình (*) bằng số giao điểm của parabol (P): y = 2 t 2 − 3 t − 3 và đường thẳng d : y = 5 m

Xét parabol  P : y = 2 t 2 - 3 t - 3 ta có bảng biến thiên như sau:

 

Từ bảng biến thiên ta có phương trình (*) có nghiệm  t ∈ ( - ∞ ; - 2 ] ∪ [ 2 ; + ∞ )  khi và chỉ khi  5 m ≥ - 1  hoặc  5 m ≥ 11

Vậy khi m ∈ − 1 5 ; + ∞ thì phương trình có nghiệm ⇒ a = 1 b = 5 ⇒ T = 5

Đáp án cần chọn là: B

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

NV
25 tháng 2 2019

\(P=\dfrac{16}{x}+\dfrac{\dfrac{1}{4}}{y}=\dfrac{4^2}{x}+\dfrac{\left(\dfrac{1}{2}\right)^2}{y}\ge\dfrac{\left(4+\dfrac{1}{2}\right)^2}{x+y}=\dfrac{81}{20}\)

\(\Rightarrow P_{min}=\dfrac{81}{20}\) khi \(\left\{{}\begin{matrix}x=\dfrac{40}{9}\\y=\dfrac{5}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=81\\b=20\end{matrix}\right.\) \(\Rightarrow a+b=101\)