K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)

Ta có:

\(A=\frac{a^{670}b^{672}c^{673}}{a^{2015}}=\frac{a^{670}a^{672}a^{673}}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\)

Vậy \(A=1\)

12 tháng 2 2017

Áp dụng t/c' dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\) (1)

\(\Rightarrow\frac{b}{c}=1\Rightarrow b=c\) (2)

\(\Rightarrow\frac{c}{a}=1\Rightarrow c=a\) (3)

Từ (1);(2);(3) \(\Rightarrow a=b=c\)

\(\Rightarrow A=\frac{a^{670}.b^{672}.c^{673}}{a^{2015}}=\frac{a^{670}.a^{672}.a^{673}}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\)

\(\Rightarrow A=1\)

14 tháng 8 2016

Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)

\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\) 

\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

 

 

14 tháng 8 2016

Hỏi đáp Toán

2 tháng 7 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng dãy tỉ số bằng nhau:

 \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

2 tháng 7 2018

Có \(\frac{a}{b}=\frac{c}{d}\)\(\left(a;b;c;d\ne0\right)\)

\(\Rightarrow a=b=c=d\)

Lại có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Vì \(a=b=c=d\)nên \(\frac{a+b}{a-b}=\frac{b+c}{b-c}=\frac{c+d}{c-d}\)

Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)( đpcm )

\(=\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{2}{ac}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

13 tháng 7 2016

\(A=\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{2}{ac}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Linh không biết a + b + c = 0 để làm gì?

Không. Vì không có phân số nào mà cả tử số và mẫu số nhân với hai số khác nhau lại bằng phân số đã cho cả (hay do m khác n)

7 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

 Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)

Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)

18 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk

a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)

Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)

Từ (1) và (2) suy ra đều phải chứng minh .

b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)

Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)

Từ (3) và (4) suy ra đều phải chứng minh

1 tháng 1 2018

Ta có: 

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-bc\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Vậy \(\frac{a}{a-b}=\frac{c}{c-d}\)

1 tháng 1 2018

Ta có :

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-bc\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

\(KL:\frac{a}{a-b}=\frac{c}{c-d}\)

15 tháng 2 2016

Ta có: \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}.\frac{a}{c}\left(a,b,c\in Z;b,c\ne0;a=b+c\right)\)

Hay \(\frac{a.c+a.b}{b.c}=\frac{a.\left(b+c\right)}{b.c}\)

=> \(\frac{a.\left(b+c\right)}{b.c}=\frac{a.\left(b+c\right)}{b.c}\)

Vậy \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}.\frac{a}{c}\left(đpcm\right)\)

15 tháng 2 2016

\(\frac{a.c}{b.c}+\frac{a.b}{b.c}=\frac{a.c+a.b}{b.c}=\frac{a.\left(c+b\right)}{b.c}=\frac{a.a}{b.c}\)

x=by+cz;y=ax+cz;z=ax+by

=>x+y+z=2(ax+by+cz)

\(\Leftrightarrow\frac{x+y+z}{2}=ax+by+cz\)

\(\Leftrightarrow y+z=\frac{x+y+z}{2}+ax;z+x=\frac{x+y+z}{2}+by;x+y=\frac{x+y+z}{2}+cz\)

\(\Leftrightarrow\frac{y+z-x}{2}=ax;\frac{z+x-y}{2}=by;\frac{x+y-z}{2}=cz\)

\(\Leftrightarrow\frac{y+z-x}{2x}=a;\frac{z+x-y}{2y}=b;\frac{x+y-z}{2z}=c\)

\(\Rightarrow A=\frac{1}{1+\frac{x+y-z}{2z}}+\frac{1}{1+\frac{y+z-x}{2x}}+\frac{1}{1+\frac{z+x-y}{2y}}=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)

\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

thiếu đề