K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Bài 1)

Áp dụng BĐT Bunhiacopxki ta có:

\(1=(a^2+b^2)(m^2+n^2)\geq (am+bn)^2\Rightarrow -1\leq am+bn\leq 1\)

Dấu bằng xảy ra khi \(\frac{a}{m}=\frac{b}{n}\) . Kết hợp với \(a^2+b^2=m^2+n^2=1\)

\(\Rightarrow \) dấu bằng xảy ra khi \(a=\pm m;b=\pm n\)

Bài 2)

Ta thấy:

\((ac-bd)^2\geq 0\Rightarrow a^2c^2+b^2d^2\geq 2abcd\Rightarrow (ac+bd)^2\geq 4abcd\)

\(\Leftrightarrow 4\geq 4cd\rightarrow cd\leq 1\Rightarrow 1-cd\geq 0\) (đpcm)

Dấu bằng xảy ra khi \(ac=bd=\pm 1\)\(cd=1\) ....

Bài 3)

Vế đầu:

\(\Leftrightarrow ab+bc+ac\leq a^2+b^2+c^2\)

Nhân $2$ và chuyển vế \(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\)

BĐT trên luôn đúng nên BĐT đầu tiên cũng đúng.

Vế sau:

\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)

Do đó BĐT sau cũng luôn đúng với mọi số thực $a,b,c$

Dấu bằng xảy ra khi $a=b=c$

21 tháng 3 2017

\(\left\{{}\begin{matrix}m^2+n^2=1\\a^2+b^2=1\end{matrix}\right.\) \(\Leftrightarrow\left(a^2+b^2\right)\left(m^2+n^2\right)=\left(am\right)^2+\left(an\right)^2+\left(bm\right)^2+\left(bn\right)^2=1\)\(\Leftrightarrow\left(am+bn\right)^2-\left[\left(ambn-\left(an\right)^2\right)+\left(ambn-\left(bm\right)^2\right)\right]=1\)\(\Leftrightarrow\left(am+bn\right)^2+\left[an\left(bm-an\right)\right]+\left[bm\left(an-bm\right)\right]=1\)

\(\Leftrightarrow\left(am+bn\right)^2-\left(bm-an\right)\left(an-bm\right)=1\)

\(\Leftrightarrow\left(am+bn\right)^2+\left(an-bm\right)^2=1\\ \)

\(\left(an-bm\right)^2\ge0\forall_{a,b,m,n}\Rightarrow\left(am+bn\right)^2\le1\)

\(\Rightarrow-1\le\left(am+bn\right)\le1\Rightarrow dpcm\)

29 tháng 4 2017

\(0\le x,y,z\le1\) nên ta có:

\(\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\Rightarrow x^2+y^2+z^2\le x+y+z=2\)

17 tháng 3 2019

Câu 3b

Phương trình chứa ẩn ở mẫu

17 tháng 3 2019

Bài 2:

Đặt \(2017-x=a;2019-x=b;2x-4036=c\)

\(\Rightarrow a+b+c=0\)

Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)

Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)

\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)

NV
15 tháng 6 2020

\(0< a< 1\Rightarrow a-1< 0\Rightarrow a\left(a-1\right)< 0\Rightarrow a^2< a\)

Tương tự: \(b\left(b-1\right)< 0\Rightarrow b^2< b\) ; \(c\left(c-1\right)< 0\Rightarrow c^2< c\)

Cộng vế với vế:

\(a^2+b^2+c^2< a+b+c\Rightarrow a^2+b^2+c^2< 2\) (đpcm)