K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

+ Chứng minh (a + b)2 = (a – b)2 + 4ab

Ta có:

VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab

      = a2 + (4ab – 2ab) + b2

      = a2 + 2ab + b2

      = (a + b)2 = VT (đpcm)

+ Chứng minh (a – b)2 = (a + b)2 – 4ab

Ta có:

VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab

      = a2 + (2ab – 4ab) + b2

      = a2 – 2ab + b2

      = (a – b)2 = VT (đpcm)

+ Áp dụng, tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.

14 tháng 1 2021

Ta có: \(ab=\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=1\).

\(a^4+b^4=\left(a^2+b^2\right)-2a^2b^2=7^2-2=47\).

Sai một chút rồi bạn!

Cái chỗ \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\) mới đúng bạn ạ!

2 tháng 9 2019

ta có: a + b=-2 ; a^2 + b^2 = 52

=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4

=> 52 + 2ab= 4

=> 48= -2ab

=> ab= -24

a^3 + b^3 = (a+b)( a^2-ab+ b^2)

=> a^3 + b^3 = -2.(52+24)= -2. 76= -152

24 tháng 9 2020

Ta có x3 + y3

= (x + y)(x2 - xy + y2)

= (x + y)(x2 + 2xy + y2) - 3xy(x  + y)

= (x + y)3 - 6xy 

= 23 - 6xy

= 8 - 6xy

Lại có x + y = 2

=> (x + y)2 = 4

=> x2 + y2 + 2xy = 4

=> 2xy = -6

=> xy = -3

Khi đó x3 - y3 = 8 + 6.3 = 26

b) a + b = 7

=> a = 7 - b

Khi đó ab = 12

<=> (7 - b).b = 12

=> 7b - b2 = 12

=> 7b - b2 - 12 = 0

=> -(b2 - 7b + 12) = 0

=> b2 - 4b - 3b + 12 = 0

=> b(b - 4) - 3(b - 4) = 0

=> (b - 3)(b - 4) = 0

=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)

Khi b = 3 => a = 4

Khi b = 4 => a = 3

+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1

+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1

c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)

                         = (a - b)(a2 - 2ab + b2) + 3ab(a - b)

                         = (a - b)3 + 3ab(a - b)

                          = 27 + 9ab

Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)

Khi đó C = 27 + 9.6.3 = 27 + 162 = 189

Bài 2: 

\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)

\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)

\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)

20 tháng 10 2018

tách ra như bth ấy

20 tháng 10 2018

Câu 1 :

a) \(x^3-5x^2-14x\)

\(=x^3-7x^2+2x^2-14x\)

\(=x^2\left(x-7\right)+2x\left(x-7\right)\)

\(=\left(x-7\right)\left(x^2+2x\right)\)

\(=x\left(x-7\right)\left(x+2\right)\)

b) \(a^4+a^2+1\)

\(=\left(a^2\right)^2+2a^2+1-a^2\)

\(=\left(a^2+1\right)-a^2\)

\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)

c) \(x^4+64\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot8+8^2-2\cdot x^2\cdot8\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

Câu 2 :

a) \(\left(a-b\right)^2=a^2-2ab+b^2\)

Ta có : \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow a^2+b^2=\left(a+b\right)^2-2ab=7^2-2\cdot14=25\)

\(\Rightarrow\left(a-b\right)^2=25-2\cdot12=1\)

b) tương tự

15 tháng 12 2016

(a-b)^2 = a^2-2ab+b^2

3^2 =7 - 2ab

9= 7 -2ab

-2ab=7-9

-2ab= -2

ab= 1

Có a^3-b^3= (a-b)(a^2+ab+b^2)

a^3-b^3= 3. (7+1)

a^3-b^3= 24

15 tháng 12 2016

Ta co : (a-b)2=a2-2ab+b2 

(a-b)2=a2+b2-2ab

Ma : a2+b2 va a-b=3

\(\Rightarrow\)32=7-2ab

7-32=-2ab

-2=-2ab

\(\Leftrightarrow ab=1\) 

Ta lai co : a3-b3

=(a-b)(a2+ab+b2)

=(a-b)(a2+b2+ab)

=3.(7+1)

=24