Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt vt=A
\(A>=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)^2}{2\left(a+b+c+d+e\right)}\)(bdt cauchy schwarz)
=>\(\frac{2A}{5}>=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{e}+\sqrt{d}\right)^2}{5\left(a+b+c+d+e\right)}>\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)^2}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)^2}=1\)(gợi ý:chỗ này dựa vào bdt bunhiacopxki)
=>\(A>=\frac{5}{2}\)
Áp dụng bất đẳng thức Cô-si :
\(\frac{a}{b+c}+\frac{b+c}{4a}\ge2\sqrt{\frac{a\left(b+c\right)}{4a\left(b+c\right)}}=1\)
Tương tự với các phân thức còn lại, sau đó cộng theo vế ta được :
\(VT+\frac{b+c}{4a}+\frac{c+d}{4b}+\frac{d+e}{4c}+\frac{e+a}{4d}+\frac{a+b}{4e}\ge5\)
\(\Leftrightarrow VT\ge5-\frac{1}{4}\left(\frac{b+c}{a}+\frac{c+d}{b}+\frac{d+e}{c}+\frac{e+a}{d}+\frac{a+b}{e}\right)\)
\(=5-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}+\frac{e}{c}+\frac{e}{d}+\frac{a}{d}+\frac{a}{e}+\frac{b}{e}\right)\)
\(\ge5-\frac{1}{4}\cdot10\sqrt[10]{\frac{b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e\cdot a\cdot a\cdot b}{a\cdot a\cdot b\cdot b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e}}=5-\frac{1}{4}\cdot10=\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=e=1\)
Gợi ý cho bạn :
Đặt \(x=a+b\), \(y=b+c\) , \(z=c+d\) , \(t=d+e\), \(u=e+a\),
Ta có \(a=\frac{x+u-t+z-y}{2}\), \(b=\frac{x+y+t-z-u}{2}\), \(c=\frac{y+z+u-t-x}{2}\), \(d=\frac{z+t+x-y-u}{2}\), \(e=\frac{t+u+y-x-z}{2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+e}+\frac{d}{e+a}+\frac{e}{a+b}\)
\(=\frac{x+u+z-t-y}{2y}+\frac{x+y+t-z-u}{2z}+\frac{y+z+u-t-x}{2t}+\frac{z+t+x-y-u}{2u}+\frac{t+u+y-x-z}{2x}\)
Đến đây nhóm lại rồi áp dụng BĐT Cauchy.
\(a+b\ge2\sqrt{ab},b+c\ge2\sqrt{bc},c+d\ge2\sqrt{cd},d+e\ge2\sqrt{de},\)
\(e+f\ge2\sqrt{ef},f+a\ge2\sqrt{fa}\)
Suy ra \(\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+e\right)\left(e+f\right)\left(f+a\right)\ge2^6\sqrt{a^2b^2c^2d^2e^2f^2}=64\).
Dấu \(=\)xảy ra khi \(a=b=c=d=e=f=1\).
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(\frac{a}{4}+b\geq 2\sqrt{\frac{ab}{4}}=\sqrt{ab}\)
\(\frac{a}{4}+c\geq 2\sqrt{\frac{ac}{4}}=\sqrt{ac}\)
\(\frac{a}{4}+d\geq 2\sqrt{\frac{ad}{4}}=\sqrt{ad}\)
\(\frac{a}{4}+e\geq 2\sqrt{\frac{ae}{4}}=\sqrt{ae}\)
Cộng theo vế:
\(\Rightarrow a+b+c+d+e\geq \sqrt{ab}+\sqrt{ac}+\sqrt{ad}+\sqrt{ae}\)
\(\Leftrightarrow a+b+c+d+e\geq \sqrt{a}(\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e})\)
Ta có đpcm.
Dấu bằng xảy ra khi \(\frac{a}{4}=b=c=d=e\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)