K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Mình có ý tưởng thế này.

Theo vi et thì

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Ta có:

\(\dfrac{1}{x_1}+\dfrac{1}{2x_2}=\dfrac{1}{30}\)

\(\Leftrightarrow\dfrac{2x_2+x_1}{2x_1x_2}=\dfrac{1}{30}\)

\(\Leftrightarrow\dfrac{2+x_2}{2m}=\dfrac{1}{30}\)

\(\Leftrightarrow m=30+15x_2\)

Vì x2 là 1 nghiệm của pt nên ta có:

\(x^2_2-2x_2+m=0\)

\(\Leftrightarrow x^2_2-2x_2+30+15x_2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2=-10\\x_2=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x_1=12\\x_1=5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=-120\\m=-15\end{matrix}\right.\)

3 tháng 5 2017

Tại sao nhất thiết phải biến về vi et

Y
23 tháng 5 2019

+ \(2a+b+c=\left(a+b\right)+\left(a+c\right)\)

\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) ( theo AM-GM )

\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)

\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow b=c\)

+ Tương tự : \(\frac{1}{\left(2b+c+a\right)^2}\le\frac{1}{4\left(a+b\right)\left(b+c\right)}\). Dấu "=" xảy ra <=> a = c

\(\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(b+c\right)}\). Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Do đó : \(P\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\)

\(\Rightarrow P\le\frac{1}{2}\cdot\frac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}\)\(=8abc\)

\(\Rightarrow P\le\frac{a+b+c}{16abc}\)

+ \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\). Dấu :=" xảy ra \(\Leftrightarrow a=b\)

\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\). Dấu "=" xảy ra <=> b = c

\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\). Dấu "=" xảy ra <=> c = a

\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Rightarrow3\ge\frac{a+b+c}{abc}\) \(\Rightarrow a+b+c\le3abc\)

\(\Rightarrow P\le\frac{3abc}{16abc}=\frac{3}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

15 tháng 7 2017

a) \(\sqrt{\dfrac{25}{81}.\dfrac{16}{49}.\dfrac{196}{9}}=\sqrt{\dfrac{25}{81}}.\sqrt{\dfrac{16}{49}}.\sqrt{\dfrac{196}{9}}=\dfrac{5}{9}.\dfrac{4}{7}.\dfrac{14}{3}=\dfrac{40}{27}\)

b) \(\sqrt{3\dfrac{1}{16}.2\dfrac{14}{25}.2\dfrac{34}{81}}=\sqrt{\dfrac{49}{16}.\dfrac{64}{25}.\dfrac{196}{81}}=\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{64}{25}}.\sqrt{\dfrac{196}{81}}=\dfrac{7}{4}.\dfrac{8}{5}.\dfrac{14}{9}=\dfrac{196}{45}\)

c) \(\dfrac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}=\sqrt{\dfrac{640.34,3}{567}}=\sqrt{\dfrac{64.49}{81}}=\dfrac{\sqrt{64}.\sqrt{49}}{\sqrt{81}}=\dfrac{8.7}{9}=\dfrac{56}{9}\)

d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}=\sqrt{21,6.810.\left(11^2-5^2\right)}=\sqrt{216.81.\left(11+5\right)\left(11-5\right)}=\sqrt{36^2.9^2.4^2}=36.9.4=1296\)

10 tháng 9 2018

\(a.A=\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{x}\right)^2-\dfrac{2}{x}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(\dfrac{x+1}{x}\right)^2-2.\dfrac{x+1}{x}.\dfrac{1}{x+1}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{x}-\dfrac{1}{x+1}\right)^2}=\left|x+\dfrac{1}{x}+\dfrac{1}{x+1}\right|\)

\(b.\) Áp dụng điều đã CM ở câu a , ta có :

\(B=\sqrt{1+\dfrac{1}{1^1}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}=1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{99}-\dfrac{1}{100}=100-\dfrac{1}{100}=\)

10 tháng 9 2018

Bạn thử tham khảo link này nha: https://olm.vn/hoi-dap/question/1294056.html

26 tháng 4 2018

\(\dfrac{\sqrt{a}-1}{2\sqrt{a}}\)

26 tháng 4 2018

câu 2 chỉ cần thế vào thôi bạn ạ

23 tháng 11 2017

Võ Đông Anh Tuấn

23 tháng 11 2017

Akai HarumaAce LegonaAn Nguyễn Bá

30 tháng 1 2019

\(a)P=\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}+\dfrac{2x}{x-1}\\ P=\dfrac{\sqrt{x}+1+\sqrt{x}-1+2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{2\sqrt{x}+2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{2\sqrt{x}\left(1+\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

a: \(P=\dfrac{\sqrt{x}+1+\sqrt{x}-1+2x}{x-1}=\dfrac{2x+2\sqrt{x}}{x-1}=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

b: Để P>-1/2 thì P+1/2>0

\(\Leftrightarrow\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{2}>0\)

=>\(\dfrac{5\sqrt{x}-1}{2\left(\sqrt{x}-1\right)}>0\)

=>1/5<căn x<1

=>1/25<x<1

13 tháng 7 2017

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\Sigma\dfrac{1}{2x+3y+3z}\le\Sigma\dfrac{1}{16}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)

\(\Rightarrow P\le\dfrac{4}{16}\Sigma\left(\dfrac{1}{x+y}\right)=\dfrac{2017}{4}\)

Dấu " = " xảy ra khi \(x=y=z=\dfrac{3}{4034}\)

16 tháng 7 2017

Trai Vô Đối câu này đề thi vô lớp 10 tỉnh Thanh Hóa ( tất cả thí sinh nek .... lúc nào rảnh mik đăng lên thử xem sao )

22 tháng 4 2018

Phần 2 tớ kh rõ đề bài bạn ạ ????Hỏi đáp Toán