Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
1/
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1/1-1/100
Vì 1/100>0
-->1/1-1/100<1
-->A<1
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{2011^2}<\frac{1}{2010.2011};\frac{1}{2012^2}<\frac{1}{2011.2012}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010+2011}+\frac{1}{2011.2012}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<\frac{1}{1}-\frac{1}{2012}\)
Vì \(\frac{1}{2012}>0\) => \(\frac{1}{1}-\frac{1}{2012}<1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<1\)
Ta có:\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};..........;\frac{1}{2012^2}< \frac{1}{2011.2012}\)
Nên \(\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{2011.2012}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{2011}-\frac{1}{2012}\)
\(=1-\frac{1}{2012}< 1\)
ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};...;\frac{1}{2011^2}< \frac{1}{2010.2011};\)\(\frac{1}{2012^2}< \frac{1}{2011.2012}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}\)
\(=1-\frac{1}{2012}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\left(đpcm\right)\)
Ta có
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{2012^2}< \frac{1}{2011.2012}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)
= 1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2011}-\frac{1}{2012}\)
=1-\(\frac{1}{2012}\)=\(\frac{2011}{2012}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2012^2}< 1\)
\(\frac{-5}{3}-\left(\frac{4}{5}-\frac{1}{2}\right)-\left|\frac{3}{4}-\frac{5}{2}+\frac{1}{3}\right|\)
\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left|\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right|\)
\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left(\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right)\)
\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\frac{3}{4}+\frac{5}{2}-\frac{1}{3}\)
\(=\left(\frac{-5}{3}-\frac{1}{3}\right)+\left(\frac{1}{2}+\frac{5}{2}\right)-\left(\frac{4}{5}+\frac{3}{4}\right)\)
\(=\frac{-6}{3}+\frac{6}{2}-\left(\frac{16}{20}+\frac{15}{20}\right)\)
\(=-2+3-\frac{31}{20}\)
\(=1-\frac{31}{20}=\frac{-11}{20}\)
\(\frac{-5}{3}-\left(\frac{4}{5}-\frac{1}{2}\right)-\left|\frac{3}{4}-\frac{5}{2}+\frac{1}{3}\right|\)
\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left|\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right|\)
\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left(\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right)\)
\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\frac{3}{4}+\frac{5}{2}-\frac{1}{3}\)
\(=\left(\frac{-5}{3}-\frac{1}{3}\right)+\left(\frac{1}{2}+\frac{5}{2}\right)-\left(\frac{4}{5}+\frac{3}{4}\right)\)
\(=\frac{-6}{3}+\frac{6}{2}-\left(\frac{16}{20}+\frac{15}{20}\right)\)
\(=\frac{-6}{3}+\frac{6}{2}-\left(\frac{16}{20}+\frac{15}{20}\right)\)
\(=1-\frac{31}{20}=\frac{-11}{20}\)