K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

26 tháng 4 2016

1/

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A=1/1-1/100

Vì 1/100>0

-->1/1-1/100<1

-->A<1

27 tháng 2 2016

Ta có : \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{2011^2}<\frac{1}{2010.2011};\frac{1}{2012^2}<\frac{1}{2011.2012}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010+2011}+\frac{1}{2011.2012}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<\frac{1}{1}-\frac{1}{2012}\)

Vì \(\frac{1}{2012}>0\) => \(\frac{1}{1}-\frac{1}{2012}<1\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<1\)

27 tháng 2 2016

zee that tri tuệ ve toan day so; ok 10đ

5 tháng 7 2018

Ta có:\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};..........;\frac{1}{2012^2}< \frac{1}{2011.2012}\)

Nên \(\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{2011.2012}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{2011}-\frac{1}{2012}\)

\(=1-\frac{1}{2012}< 1\)

5 tháng 7 2018

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};...;\frac{1}{2011^2}< \frac{1}{2010.2011};\)\(\frac{1}{2012^2}< \frac{1}{2011.2012}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}\)

\(=1-\frac{1}{2012}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\left(đpcm\right)\)

31 tháng 3 2019

Ta có

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{2012^2}< \frac{1}{2011.2012}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

= 1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2011}-\frac{1}{2012}\)

=1-\(\frac{1}{2012}\)=\(\frac{2011}{2012}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2012^2}< 1\)

5 tháng 8 2016

\(\frac{-5}{3}-\left(\frac{4}{5}-\frac{1}{2}\right)-\left|\frac{3}{4}-\frac{5}{2}+\frac{1}{3}\right|\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left|\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right|\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left(\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right)\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\frac{3}{4}+\frac{5}{2}-\frac{1}{3}\)

\(=\left(\frac{-5}{3}-\frac{1}{3}\right)+\left(\frac{1}{2}+\frac{5}{2}\right)-\left(\frac{4}{5}+\frac{3}{4}\right)\)

\(=\frac{-6}{3}+\frac{6}{2}-\left(\frac{16}{20}+\frac{15}{20}\right)\)

\(=-2+3-\frac{31}{20}\)

\(=1-\frac{31}{20}=\frac{-11}{20}\)

6 tháng 8 2016

\(\frac{-5}{3}-\left(\frac{4}{5}-\frac{1}{2}\right)-\left|\frac{3}{4}-\frac{5}{2}+\frac{1}{3}\right|\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left|\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right|\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\left(\frac{3}{4}+\frac{-5}{2}+\frac{1}{3}\right)\)

\(=\frac{-5}{3}-\frac{4}{5}+\frac{1}{2}-\frac{3}{4}+\frac{5}{2}-\frac{1}{3}\)

\(=\left(\frac{-5}{3}-\frac{1}{3}\right)+\left(\frac{1}{2}+\frac{5}{2}\right)-\left(\frac{4}{5}+\frac{3}{4}\right)\)

\(=\frac{-6}{3}+\frac{6}{2}-\left(\frac{16}{20}+\frac{15}{20}\right)\)

\(=\frac{-6}{3}+\frac{6}{2}-\left(\frac{16}{20}+\frac{15}{20}\right)\)

\(=1-\frac{31}{20}=\frac{-11}{20}\)

3 tháng 4 2016

làm vạch p/s làm sao giải cho

3 tháng 4 2016

bn ơi , lm vạch p/s lm sao z 

Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)Hãy so sánh S và \(\frac{1}{2}\)Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)Bài 4: Cho tổng...
Đọc tiếp

Bài 1: Cho A= \(\frac{2011}{2012}\)\(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)

Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)

Hãy so sánh S và \(\frac{1}{2}\)

Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)

S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)

Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

Chứng tỏ rằng A>1

Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Bài 6: Chứng tỏ rằng

D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1

Bài 7: 

C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)

Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm

4
10 tháng 6 2016

sorry,quá dài

10 tháng 6 2016

Đề bài 7 có sai gì không bạn?

23 tháng 3 2018

\(\frac{9620}{979}\)