\(\frac{1}{112}\)- \(\frac{1}{84}\)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

Ta có: \(B=\frac{1}{112}-\frac{1}{84}-\frac{1}{60}-\frac{1}{40}-\frac{1}{24}-\frac{1}{12}-\frac{1}{4}\)

\(\Rightarrow2B=\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)

\(\Rightarrow2B=\frac{1}{56}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(\Rightarrow2B=\frac{1}{56}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(\Rightarrow2B=\frac{1}{56}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(\Rightarrow2B=\frac{1}{56}-\left(1-\frac{1}{7}\right)\)

\(\Rightarrow2B=\frac{1}{56}-\frac{6}{7}\)

\(\Rightarrow2B=-\frac{47}{56}\)

\(\Rightarrow B=-\frac{47}{112}\)

Hok tốt nha^^

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok

 

7 tháng 2 2020

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+\frac{2}{2018}+\frac{3}{2017}+...+\frac{2018}{2}+\frac{2019}{1}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+1+\frac{2}{2018}+1+\frac{3}{2017}+1+...+\frac{2018}{2}+1+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{2020}{2019}+\frac{2020}{2018}+\frac{2020}{2017}+...+\frac{2020}{2}+\frac{2020}{2020}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{2020\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}\right)}\)

\(\frac{A}{B}=\frac{1}{2020}\)

24 tháng 6 2019

a, -1/24 - [1/4 - (1/2 - 7/8)]

= -1/24 - [1/4 - 1/2 + 7/8]

= -1/24 - 1/4 + 1/2 - 7/8

= -1/24 - 6/24 + 12/14 - 21/24

= -16/24 = -2/3

24 tháng 6 2019

Yêu cầu tính hả ?

a ) \(\frac{-1}{24}-\left[\frac{1}{4}-\left(\frac{1}{2}-\frac{7}{8}\right)\right]\)

\(=\frac{-1}{24}-\left[\frac{1}{4}-\left(-\frac{3}{8}\right)\right]\)

\(=\frac{-1}{24}-\left[\frac{1}{4}+\frac{3}{8}\right]\)

\(=\frac{-1}{24}-\frac{5}{8}\)

\(=\frac{-2}{3}\)

b ) \(\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}-\left(-\frac{2}{7}-\frac{1}{10}\right)\right]\)

\(=\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}-\left(-\frac{27}{10}\right)\right]\)

\(=\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}+\frac{27}{10}\right]\)

\(=\frac{-24}{35}-\frac{16}{5}\)

\(=\frac{-136}{35}\)

6 tháng 1 2017

A = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/149 - 1/150

A = (1 + 1/3 + 1/5 + ... + 1/149) - (1/2 + 1/4 + 1/6 + ... + 1/150)

A = (1 + 1/2 + 1/3 +1/4 + 1/5 + 1/6 + ... + 1/149 + 1/150 - 2.(1/2 + 1/4 + 1/6 + ... + 1/150)

A = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/149 + 1/150) - (1 + 1/2 + 1/3 + ... + 1/75)

A =1/76 + 1/77 + 1/78 + ... + 1/150

=> A/B = 1