Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.
\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)
\(=\frac{35-21-15}{105}\)
\(=-\frac{1}{105}\)
b.
\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)
\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)
\(=\frac{12-15+10}{20}\)
\(=\frac{7}{20}\)
c.
\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)
\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)
\(=\frac{60-42-35}{105}\)
\(=-\frac{17}{105}\)
2.
a.
\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)
\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)
\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(S=-\left(1-\frac{1}{n}\right)\)
\(S=-1+\frac{1}{n}\)
b.
\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)
\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)
\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(S=-\left(1-\frac{1}{n}\right)\)
\(S=-1+\frac{1}{n}\)
Chúc bạn học tốt
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+\frac{2}{2018}+\frac{3}{2017}+...+\frac{2018}{2}+\frac{2019}{1}}\)
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+1+\frac{2}{2018}+1+\frac{3}{2017}+1+...+\frac{2018}{2}+1+1}\)
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{2020}{2019}+\frac{2020}{2018}+\frac{2020}{2017}+...+\frac{2020}{2}+\frac{2020}{2020}}\)
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{2020\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}\right)}\)
\(\frac{A}{B}=\frac{1}{2020}\)
a, -1/24 - [1/4 - (1/2 - 7/8)]
= -1/24 - [1/4 - 1/2 + 7/8]
= -1/24 - 1/4 + 1/2 - 7/8
= -1/24 - 6/24 + 12/14 - 21/24
= -16/24 = -2/3
Yêu cầu tính hả ?
a ) \(\frac{-1}{24}-\left[\frac{1}{4}-\left(\frac{1}{2}-\frac{7}{8}\right)\right]\)
\(=\frac{-1}{24}-\left[\frac{1}{4}-\left(-\frac{3}{8}\right)\right]\)
\(=\frac{-1}{24}-\left[\frac{1}{4}+\frac{3}{8}\right]\)
\(=\frac{-1}{24}-\frac{5}{8}\)
\(=\frac{-2}{3}\)
b ) \(\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}-\left(-\frac{2}{7}-\frac{1}{10}\right)\right]\)
\(=\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}-\left(-\frac{27}{10}\right)\right]\)
\(=\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}+\frac{27}{10}\right]\)
\(=\frac{-24}{35}-\frac{16}{5}\)
\(=\frac{-136}{35}\)
A = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/149 - 1/150
A = (1 + 1/3 + 1/5 + ... + 1/149) - (1/2 + 1/4 + 1/6 + ... + 1/150)
A = (1 + 1/2 + 1/3 +1/4 + 1/5 + 1/6 + ... + 1/149 + 1/150 - 2.(1/2 + 1/4 + 1/6 + ... + 1/150)
A = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/149 + 1/150) - (1 + 1/2 + 1/3 + ... + 1/75)
A =1/76 + 1/77 + 1/78 + ... + 1/150
=> A/B = 1
Ta có: \(B=\frac{1}{112}-\frac{1}{84}-\frac{1}{60}-\frac{1}{40}-\frac{1}{24}-\frac{1}{12}-\frac{1}{4}\)
\(\Rightarrow2B=\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(\Rightarrow2B=\frac{1}{56}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(\Rightarrow2B=\frac{1}{56}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(\Rightarrow2B=\frac{1}{56}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(\Rightarrow2B=\frac{1}{56}-\left(1-\frac{1}{7}\right)\)
\(\Rightarrow2B=\frac{1}{56}-\frac{6}{7}\)
\(\Rightarrow2B=-\frac{47}{56}\)
\(\Rightarrow B=-\frac{47}{112}\)
Hok tốt nha^^