Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(x^2-2y^2-xy=0\)
<=> \(\left(x-2y\right)\left(x+y\right)=0\)
<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)
Sau đó bạn thế vào PT dưới rồi tính
3. ĐKXĐ \(x\le1\); \(x+2y+3\ge0\)
.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)
<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)
<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)
Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\); \(x\le1\)nên \(-y^2+x+2y-4< 0\)
=> \(x=2y\)
Thế vào Pt còn lại ta được
\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)
<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)
<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )
Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
2)ĐK:\(\begin{cases}x\ge-1\\...\\y^2+8x\ge0\end{cases}\)
pt(1)\(\Leftrightarrow2\left[\sqrt{x^2+5x-y+2}-\left(x+2\right)\right]+\left(x+2-\sqrt{y^2+8x}\right)=0\)
\(\Leftrightarrow\left(x-y-2\right)\left(\frac{2}{\sqrt{x^2+5x-y+2}+x+2}+\frac{x+y-2}{x+2+\sqrt{y^2+8x}}\right)=0\)
\(\Rightarrow\)y=x-2
Thay vào pt(2) ta được:x-9=\(\sqrt{x+1}\)
\(\Leftrightarrow\begin{cases}x\ge9\\x^2-19x+80=0\end{cases}\Leftrightarrow x=\frac{19+\sqrt{41}}{2}}\)
\(\Rightarrow\)(x;y)=(\(\frac{19+\sqrt{41}}{2};\frac{15+\sqrt{41}}{2}\))(t/m)
\(\left\{\begin{matrix}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\left(1\right)\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\left(2\right)\end{matrix}\right.\)
Ta có:
\( (2)\Leftrightarrow xy\left ( x^2+y^2 \right )=x^2+2xy+y^2 \\\ \Leftrightarrow\left (xy-1 \right )\left ( x^2+y^2-2 \right )=0\)
*)TH1: \(xy=1\) thay vào \((1)\) ta được:
\(5x-4y+3y^3-2(x+y)=0\)
\(\Leftrightarrow y^4-2y^2+1=0\)\(\Leftrightarrow y=\pm 1\Rightarrow x=\pm 1\)
*)TH2: \(x^2+y^2=2\).Thay vào \((1)\) ta được:
\(5x^2y-4xy^2+3y^3-(x^2+y^2)(x+y)=0\)
\(\Leftrightarrow 2y^3+4x^2y-5xy^2-x^3=0\)
\(\Leftrightarrow (y^3-x^3)+(y^3+4x^2y-5xy^2)=0\)
\(\Leftrightarrow (y-x)^2(2y-x)=0\)
Với \(x=y\) ta tìm được 2 nghiệm \((x;y)=(1;1); (-1;-1)\)
Với \(x=2y\) thay vào \(x^2+y^2=2\) ta tìm được \(y=\pm \sqrt{\frac{2}{5}}\Rightarrow x=\pm2\sqrt{\frac{2}{5}}\)
Vậy nghiệm của hệ phương trình đã cho là :\((x;y)=(1;1); (-1;-1); \left(2\sqrt{\frac{2}{5}};\sqrt{\frac{2}{5}}\right); \left(-2\sqrt{\frac{2}{5}};-\sqrt{\frac{2}{5}}\right) \)