Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có U6+U8=2U1+12d=-18
\(U^2_3+U^2_5=2U^2_1+12Ud+12d^2=-26\)
từ đó bằng phương pháp giải hệ 2 pt trên là ra
Đoạn \(2u_1^2+2ud+12d^2\) em ko hiểu lắm chị ơi :o Em đã giải bài toán này theo cách bên dưới nhưng ra nghiệm rất xấu (ko biết có đúng không?). Em ko hiểu mình đã gặp vấn đề chỗ nào? Mong được kiểm tra giúp ạ? thanks
Đặt \(u_n+\dfrac{5}{4}=v_n\)
\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{9}{4};v_2=\dfrac{13}{4}\\v_{n+2}=2v_{n+1}+3v_n\end{matrix}\right.\)
Ta có CTTQ của dãy \(\left(v_n\right)\) là:
\(v_n=\dfrac{11}{24}.3^n-\dfrac{7}{8}.\left(-1\right)^n\)
(Bạn tự chứng minh theo quy nạp)
\(\Rightarrow u_n=\dfrac{11}{24}.3^n-\dfrac{7}{8}\left(-1\right)^n-\dfrac{5}{4}\) với \(\forall n\in N\text{*}\)
\(\Rightarrow S=2\left(u_1+u_2+...+u_{100}\right)+u_{101}\)
\(=\left[\dfrac{11}{12}\left(3^1+3^2+...+3^{100}\right)-\dfrac{7}{4}\left(-1+1-...+1\right)-\dfrac{5}{2}.100\right]+\dfrac{11}{24}.3^{101}-\dfrac{7}{8}.\left(-1\right)^{101}-\dfrac{5}{4}\)
\(=\dfrac{11}{12}.\dfrac{3^{101}-3}{2}-250+\dfrac{11}{24}.3^{101}+\dfrac{7}{8}\)
\(=\dfrac{11}{24}.\left(2.3^{101}-3\right)-\dfrac{1993}{8}\)
\(=\dfrac{11}{4}.3^{100}-\dfrac{501}{2}\)
\(\left(n+1\right)u_{n+1}=\dfrac{1}{2}nu_n+n+2\)
\(\Leftrightarrow\left(n+1\right)u_{n+1}-2\left(n+1\right)=\dfrac{1}{2}\left[nu_n-2n\right]\)
Đặt \(n.u_n-2n=v_n\Rightarrow\left\{{}\begin{matrix}v_1=-1\\v_{n+1}=\dfrac{1}{2}v_n\end{matrix}\right.\)
\(\Rightarrow v_n=-1.\left(\dfrac{1}{2}\right)^{n-1}\Rightarrow n.u_n-2n=-\dfrac{1}{2^{n-1}}\)
\(\Rightarrow u_n=2-\dfrac{1}{n.2^{n-1}}\)
\(u_n-4u_{n-1}+3u_{n-2}=5.2^n\)
\(\Leftrightarrow u_n-u_{n-1}-3\left(u_{n-1}-u_{n-2}\right)=5.2^n\)
Đặt \(u_n-u_{n-1}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-u_0=4\\v_n-3v_{n-1}=5.2^n\end{matrix}\right.\)
\(\Rightarrow v_n+10.2^n=3\left(v_{n-1}+10.2^{n-1}\right)\)
Đặt \(v_n+10.2^n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=v_1+10.2^1=24\\x_n=3x_{n-1}\end{matrix}\right.\)
\(\Rightarrow x_n\) là CSN với công bội 3
\(\Rightarrow x_n=24.3^{n-1}\)
\(\Rightarrow v_n=x_n-10.2^n=24.3^{n-1}-10.2^n=8.3^n-10.2^n\)
\(\Rightarrow u_n-u_{n-1}=8.3^n-10.2^n\)
\(\Rightarrow u_n-12.3^n+20.2^n=u_{n-1}-12.3^{n-1}+20.2^{n-1}\)
Đặt \(u_n-12.3^n+20.2^n=y_n\Rightarrow\left\{{}\begin{matrix}y_1=u_1-12.3^1+20.2^1=7\\y_n=y_{n-1}=...=y_1=7\end{matrix}\right.\)
\(\Rightarrow u_n=12.3^n-20.2^n+7\)