K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 12 2021

\(u_n-4u_{n-1}+3u_{n-2}=5.2^n\)

\(\Leftrightarrow u_n-u_{n-1}-3\left(u_{n-1}-u_{n-2}\right)=5.2^n\)

Đặt \(u_n-u_{n-1}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-u_0=4\\v_n-3v_{n-1}=5.2^n\end{matrix}\right.\)

\(\Rightarrow v_n+10.2^n=3\left(v_{n-1}+10.2^{n-1}\right)\)

Đặt \(v_n+10.2^n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=v_1+10.2^1=24\\x_n=3x_{n-1}\end{matrix}\right.\)

\(\Rightarrow x_n\) là CSN với công bội 3

\(\Rightarrow x_n=24.3^{n-1}\)

\(\Rightarrow v_n=x_n-10.2^n=24.3^{n-1}-10.2^n=8.3^n-10.2^n\)

\(\Rightarrow u_n-u_{n-1}=8.3^n-10.2^n\)

\(\Rightarrow u_n-12.3^n+20.2^n=u_{n-1}-12.3^{n-1}+20.2^{n-1}\)

Đặt \(u_n-12.3^n+20.2^n=y_n\Rightarrow\left\{{}\begin{matrix}y_1=u_1-12.3^1+20.2^1=7\\y_n=y_{n-1}=...=y_1=7\end{matrix}\right.\)

\(\Rightarrow u_n=12.3^n-20.2^n+7\)

23 tháng 12 2016

ta có U6+U8=2U1+12d=-18

\(U^2_3+U^2_5=2U^2_1+12Ud+12d^2=-26\)

từ đó bằng phương pháp giải hệ 2 pt trên là ra

23 tháng 12 2016

Đoạn \(2u_1^2+2ud+12d^2\) em ko hiểu lắm chị ơi :o Em đã giải bài toán này theo cách bên dưới nhưng ra nghiệm rất xấu (ko biết có đúng không?). Em ko hiểu mình đã gặp vấn đề chỗ nào? Mong được kiểm tra giúp ạ? thanks

Cấp số cộng

Đặt \(u_n+\dfrac{5}{4}=v_n\)

\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{9}{4};v_2=\dfrac{13}{4}\\v_{n+2}=2v_{n+1}+3v_n\end{matrix}\right.\)

Ta có CTTQ của dãy \(\left(v_n\right)\) là:

\(v_n=\dfrac{11}{24}.3^n-\dfrac{7}{8}.\left(-1\right)^n\)

(Bạn tự chứng minh theo quy nạp)

\(\Rightarrow u_n=\dfrac{11}{24}.3^n-\dfrac{7}{8}\left(-1\right)^n-\dfrac{5}{4}\) với \(\forall n\in N\text{*}\)

\(\Rightarrow S=2\left(u_1+u_2+...+u_{100}\right)+u_{101}\)

\(=\left[\dfrac{11}{12}\left(3^1+3^2+...+3^{100}\right)-\dfrac{7}{4}\left(-1+1-...+1\right)-\dfrac{5}{2}.100\right]+\dfrac{11}{24}.3^{101}-\dfrac{7}{8}.\left(-1\right)^{101}-\dfrac{5}{4}\)

\(=\dfrac{11}{12}.\dfrac{3^{101}-3}{2}-250+\dfrac{11}{24}.3^{101}+\dfrac{7}{8}\)

\(=\dfrac{11}{24}.\left(2.3^{101}-3\right)-\dfrac{1993}{8}\)

\(=\dfrac{11}{4}.3^{100}-\dfrac{501}{2}\)

NV
29 tháng 1 2022

\(\left(n+1\right)u_{n+1}=\dfrac{1}{2}nu_n+n+2\)

\(\Leftrightarrow\left(n+1\right)u_{n+1}-2\left(n+1\right)=\dfrac{1}{2}\left[nu_n-2n\right]\)

Đặt \(n.u_n-2n=v_n\Rightarrow\left\{{}\begin{matrix}v_1=-1\\v_{n+1}=\dfrac{1}{2}v_n\end{matrix}\right.\)

\(\Rightarrow v_n=-1.\left(\dfrac{1}{2}\right)^{n-1}\Rightarrow n.u_n-2n=-\dfrac{1}{2^{n-1}}\)

\(\Rightarrow u_n=2-\dfrac{1}{n.2^{n-1}}\)