K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2022

\(B=\dfrac{3}{\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}+\dfrac{x+5}{x-1}\)

\(=\dfrac{3}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}+\dfrac{x+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)+x+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}-3-\sqrt{x}-1+x+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}^2+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\left(đpcm\right)\)

b) Thay x=49 vào A, ta được:

\(A=\dfrac{7-1}{7-5}=\dfrac{6}{2}=3\)

a) Ta có: \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)

\(=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

13 tháng 3 2022

1. Với x = 36
=> A= \(\dfrac{\sqrt{36}-2}{\sqrt{36}-1}\)=\(\dfrac{4}{5}\)
2. Với x >0, x ≠1
B=\(\dfrac{x-5}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}\)
B=\(\dfrac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. P=\(\dfrac{A}{B}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Ta có \(\sqrt{P}< \dfrac{1}{2}\)
=>P<\(\dfrac{1}{4}\)
=> \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)<\(\dfrac{1}{4}\)
=> \(4\left(\sqrt{x}-2\right)< \sqrt{x}+1\)
=> \(4\sqrt{x}-8< \sqrt{x}+1 \)
=> \(3\sqrt{x}< 9\)
=>\(\sqrt{x}< 3\)
=> x< 9
Lại có x ϵ Z => x ϵ {-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8}
Ta thử lại với x ≠ 1
=> x ϵ {-8,-7,-6,-5,-4,-3,-2,0,2,3,4,5,6,7,8}

5 tháng 8 2023

\(a,x=16\Rightarrow A=\dfrac{\sqrt{16}+2}{\sqrt{16}-3}=\dfrac{4+2}{4-3}=6\)

\(b,B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\left(dk:x\ge0,x\ne1,x\ne9\right)\\ =\dfrac{\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-7\right)}{x-1}\\ =\dfrac{x+4\sqrt{x}-5-\sqrt{x}+7}{x-1}\\ =\dfrac{x+3\sqrt{x}+2}{x-1}\\ =\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(dpcm\right)\)

\(c,\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}:\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\le\dfrac{x}{\sqrt{x}-3}\)

\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}.\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\le\dfrac{x}{\sqrt{x}-3}\)

\(\Leftrightarrow4-\dfrac{x}{\sqrt{x}-3}\le0\)

\(\Leftrightarrow\dfrac{4\sqrt{x}-12-x}{\sqrt{x}-3}\le0\)

\(\Leftrightarrow\) Pt vô nghiệm

Vậy không có giá trị x thỏa yêu cầu đề bài.

11 tháng 7 2023

\(A+B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\left(\text{đ}pcm\right)\)

A+B

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}\)

\(=\dfrac{2x-3\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

27 tháng 1 2023

loading...

12 tháng 6 2023

\(B=\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{3-\sqrt{x}}{x-1}\left(dkxd:x\ne1,x\ge0\right)\)

\(=\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2\sqrt{x}-3\sqrt{x}-3+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\left(dpcm\right)\)

\(B=\dfrac{2x+2\sqrt{x}-3\sqrt{x}-3+3-\sqrt{x}}{x-1}=\dfrac{2x-2\sqrt{x}}{x-1}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

6 tháng 7 2021

a) \(Q=\) \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne1\right)\)

\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\) 

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(Q=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(Q=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(Q=\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{2}{x-1}\)  \(\left(đpcm\right)\).

b) Để \(Q\in Z\) <=> \(\dfrac{2}{x-1}\in Z\) <=> \(x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

 x -1           1           -1           2          -2
 x        2(TM)     0(ko TM)        3(TM)     -1(koTM)

 

Vậy để biểu thức Q nhận giá trị nguyên thì \(x\in\left\{2;3\right\}\) 

 

 

 

4 tháng 7 2021

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)

a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)

c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)

\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)