Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vi UCLN(a,b).BCNN(a,b) =a.b
Do do UCLN(a,b)= 360:60=6
Dat a= 6x, b= 6y voi UCLN(x,y) = 1
Ta co 6x.6y = 360
x.y= 360:36 10
Ta xet
. Neu x= 1 thi y = 10
. Neu x = 2 thi y = 5
. Neu x = 10 thi y = 1
. Neu x = 5 thi y = 2
Do do ta co :
a = 6.1 = 6, b = 6.10 = 60
a = 6.2 = 12, b = 6.5 = 30
a = 6.10 = 60, b = 6.1 =6
a = 6.5 = 30, b = 6.2 =12
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.
a) ƯCLN(a,b) = a. b phần BCNN(a,b) = 2700 / 900 = 3
Suy ra : ƯCLN(a,b) =3
Tiếp sẽ là : a chia hết cho 3 , b chia hết cho 3
Nữa là : a = 3m ; b = 3n với điều kiện (m,n) = 1 .
Théo đề bài : a.b = 2700
Từ đây suy ra : 3m . 3n = 2700
Suy ra : 9mn =2700
Suy ra nữa là : mn = 300
Ta có bảng sau : bạn tụ kẻ bảng gồm 4 hàng và 5 cột nhé
cột 1 : hàng 1 : ghi m cột 2 : hàng 1 : 1 cột 3 : hàng 1 : 100 cột 4 : hàng 1 : 75 cột 5 : hàng 1 : 25
hàng 2 : ghi n hàng 2 : 300 hàng 2 : 3 hàng 2 : 4 hàng 2 : 12
hàng 3 : ghi a hàng 3 : 900 hàng 3 : 300 hàng 3 : 225 hàng 3 : 75
hàng 4 : ghi b hàng 4 : 3 hàng 4 : 9 hàng 4 : 12 hàng 4 : 36
Phần b) thì tương tự phần a) nha bạn !
CHÚC BẠN HỌC TỐT !!!!!!!!!!!!!!!!!
Lời giải:
a.
$ab=ƯCLN(a,b).BCNN(a,b)$
$\Rightarrow 9000=ƯCLN(a,b).900$
$\Rightarrow ƯCLN(a,b)=10$.
Đặt $a=10x, b=10y$ thì $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.
$BCNN(a,b)=10xy=900$
$\Rightarrow xy=90$
Vì $(x,y)=1$ nên ta có các cặp $(x,y)$ sau thỏa mãn:
$(x,y)=(1,90), (2,45), (5,18), (9,10), (10,9), (18,5), (45,2), (90,1)$
Từ đây bạn dễ dàng tìm được $a,b$
b.
$ƯCLN(a,b)=ab:BCNN(a,b)=360:60=6$
Đặt $a=6x, b=6y$ với $x,y$ là stn nguyên tố cùng nhau.
$\Rightarrow BCNN(a,b)=6xy=60$
$\Rightarrow xy=10$
Do $x,y$ nguyên tố cùng nhau nên:
$(x,y)=(1,10), (2,5), (5,2), (10,1)$
Từ đây dễ dàng tìm được $a,b$