Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{y+z}}{x}\geq \frac{(y+z)(x+\sqrt{yz})}{x}=y+z+\frac{\sqrt{yz}(y+z)}{x}\)
Hoàn toàn tương tự :
\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+z}}{y}\geq x+z+\frac{\sqrt{xz}(x+z)}{y}\)
\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+y}}{z}\geq x+y+\frac{\sqrt{xy}(x+y)}{z}\)
Cộng theo vế:
\(T\geq 2(x+y+z)+\underbrace{\frac{(x+y)\sqrt{xy}}{z}+\frac{(y+z)\sqrt{yz}}{x}+\frac{(z+x)\sqrt{zx}}{y}}_{M}\)
Ta có:
\(M=\frac{(\sqrt{2}-z)\sqrt{xy}}{z}+\frac{(\sqrt{2}-x)\sqrt{yz}}{x}+\frac{(\sqrt{2}-y)\sqrt{xz}}{y}\)
\(=\sqrt{2}\left(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\right)-(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)
Áp dụng BĐT AM-GM:
\(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\geq 3\sqrt[3]{\frac{xyz}{xyz}}=3\)
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\leq \frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=\sqrt{2}\)
Do đó: \(M\geq 3\sqrt{2}-\sqrt{2}=2\sqrt{2}\)
\(\Rightarrow T\geq 2(x+y+z)+M\geq 2\sqrt{2}+2\sqrt{2}=4\sqrt{2}\)
Vậy \(T_{\min}=4\sqrt{2}\)
1) ĐK: \(\frac{x+1}{x}>0\Leftrightarrow\left[\begin{array}{nghiempt}x>0\\x< -1\end{array}\right.\)
Đặt \(t=\sqrt{\frac{x+1}{x}}\left(t>0\right)\) , bất pt đã cho trở thành:
\(\frac{1}{t^2}-2t>3\Leftrightarrow\frac{1-2t^3-3t^2}{t^2}>0\Leftrightarrow1-2t^3-3t^2>0\)
\(\Leftrightarrow\left(t+1\right)^2\left(1-2t\right)>0\Leftrightarrow1-2t>0\Leftrightarrow t< \frac{1}{2}\)
\(t< \frac{1}{2}\Rightarrow\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow\frac{3x+4}{4x}< 0\)
Lập bảng xét dấu ta được \(-\frac{4}{3}< x< 0\)
Kết hợp điều kiện ta được: \(-\frac{4}{3}< x< -1\) là giá trị cần tìm
3) Chứng minh BĐT phụ: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b>0\right)\)(1)
\(\left(1\right)\Leftrightarrow\frac{1}{a+b}\le\frac{a+b}{4ab}\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
Dấu '=' xảy ra ↔ a = b
Áp dụng BĐT trên, ta có:
\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự:
\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)
\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)
Cộng vế theo vế ba BĐT trên ta được:
\(P\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{z+x}+\frac{z}{z+y}+\frac{y}{y+z}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)
Dấu '=' xảy ra khi x = y = z = 1/3 (do x + y + z = 1)
Vậy GTLN của P là 3/4 khi x = y = z = 1/3
*)\(x=0\Rightarrow y^2=1\Rightarrow P=0\)
*)\(y=0\Rightarrow x^2=1\Rightarrow P=2\)
*)\(x,y \ne 0\) chia cả tử và mẫu cho \(a=\dfrac{x}{y}\) ta được:
\(P=\dfrac{2\left(a^2+6a\right)}{a^2+2a+3}\)
\(\Leftrightarrow\left(P-2\right)a^2+2a\left(P-2\right)+3P=0\left(1\right)\)
\(\left(1\right)\) có nghiệm khi \(\Delta'=\left(P-6\right)^2-3P\left(P-2\right)\ge0\)
\(\Leftrightarrow-2\left(P-3\right)\left(P+6\right)\ge0\)\(\Leftrightarrow\left(P-3\right)\left(P+6\right)\le0\)
\(\Leftrightarrow-6\le P\le3\)
Hay \(Min=-6; Max=3\)
Lời giải:
Bài 1:
Áp dụng BĐT Cô -si ta có:
\(a^3+1+1\geq 3\sqrt[3]{a^3}=3a\)
\(b^3+1+1\geq 3\sqrt[3]{b^3}=3b\)
Cộng theo vế:
\(a^3+b^3+4\geq 3(a+b)\)
\(\Leftrightarrow 6\geq 3(a+b)\Leftrightarrow a+b\leq 2\)
Vậy \((a+b)_{\max}=2\). Dấu bằng xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cô- si ta có:
\(\frac{a^3}{b+c}+\frac{b+c}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8}}=\frac{3}{2}a\)
\(\frac{b^3}{c+a}+\frac{c+a}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8}}=\frac{3}{2}b\)
\(\frac{c^3}{a+b}+\frac{a+b}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8}}=\frac{3}{2}c\)
Cộng theo vế:
\(T+\frac{1}{2}(a+b+c)+\frac{3}{2}\geq \frac{3}{2}(a+b+c)\)
\(\Leftrightarrow T\geq a+b+c-\frac{3}{2}\)
Theo BĐT Cô-si: \(a+b+c\geq 3\sqrt[3]{abc}=3\)
\(\Rightarrow T\geq 3-\frac{3}{2}=\frac{3}{2}\)
Vậy \(T_{\min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)
Bài 3:
Điều kiện đề bài tương đương với:
\(a\leq 1; b+2a\leq 4; 2c+3b+6a\leq 18\)
Ta có:
\(A=2\left (\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)+\frac{1}{3}\left(\frac{1}{2a}+\frac{1}{b}\right)+\frac{1}{2a}\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)(6a+3b+2c)\geq (1+1+1)^2\)
\(\Rightarrow \frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\geq \frac{9}{6a+3b+2c}\geq \frac{9}{18}=\frac{1}{2}\) (1)
\(\left(\frac{1}{2a}+\frac{1}{b}\right)(2a+b)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{2a}+\frac{1}{b}\geq \frac{4}{2a+b}\geq \frac{4}{4}=1\) (2)
\(\frac{1}{2a}\geq \frac{1}{2.1}=\frac{1}{2}\) (3)
Từ (1)(2)(3) suy ra \(A\geq 2.\frac{1}{2}+\frac{1}{3}.1+\frac{1}{2}=\frac{11}{6}\)
Dấu bằng xảy ra khi \(a=1; b=2; c=3\)
Áp dụng BĐT bunyakovsky:
\(\sum\dfrac{x^2}{y+z}\ge\sum\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{matrix}\right.\) thì có a+b+c=2016 và cần tìm Min của \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}\) (\(x^2=\dfrac{a^2+c^2-b^2}{2}\))
Ta có: \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}=\dfrac{1}{2\sqrt{2}}.\left(\sum_{sym}\dfrac{a^2}{b}-\sum b\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\sum_{sym}\dfrac{a^2}{b}=\dfrac{a^2}{b}+\dfrac{c^2}{b}+\dfrac{b^2}{a}+\dfrac{c^2}{a}+\dfrac{a^2}{c}+\dfrac{b^2}{c}\ge\dfrac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}=2\left(a+b+c\right)\)
DO đó \(VT\ge\dfrac{1}{2\sqrt{2}}\left(2\sum a-\sum a\right)=\dfrac{1}{2\sqrt{2}}\left(a+b+c\right)=\dfrac{2016}{2\sqrt{2}}=\dfrac{1008}{\sqrt{2}}\)
Dấu = xảy ra khi a=b=c hay \(x=y=z=\dfrac{672}{\sqrt{2}}\)
Mk nghĩ là x3,y3,z3.
Áp dụng BĐT AM-GM:
\(\Sigma_{cyc}\left(\frac{x^2}{\sqrt{x^3+8}}\right)=\Sigma_{cyc}\left(\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\right)\)\(\ge2\Sigma_{cyc}\left(\frac{x^2}{x^2-x+6}\right)\)
Áp dụng BĐT Cauchy-Schwart:
\(2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)\(=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-\left(x+y+z\right)+18}\)\(\ge\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(x+y+z\right)-\left(x+y+z\right)+18}\)
gt\(\Leftrightarrow3\left(x+y+z\right)\le3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z\le0\\x+y+z\ge3\end{matrix}\right.\)
Đặt t=x+y+z\(\left(t\ge3\right)\)
Cần c/m:\(\frac{2t^2}{t^2-3t+18}\ge1\)
Có :\(t^2-3t+18>0\)
\(\Rightarrow2t^2\ge t^2-3t+18\)
\(\Leftrightarrow t^2+3t-18\ge3^2+3.3-18=0\)(Đúng)
Vậy min =1
Dấu = xra khi x=y=z=1.
#Walker
Kiểm tra giùm em đúng ko ạ Akai Haruma
bài 2
f(x) =|...|
ghép g(x) =x^2 -2x-3
và -(x^2 -2x-3)
m<0 vô nghiệm
m=0 2 nghiệm
m=4 3 nghiệm
0<n<4 4 nghiệm