Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-y)^2 >= 0 ; (y-z)^2 >= 0 ; (x-z)^2 >= 0
=>(x-y)^2+(y-z)^2+(x-z)^2 >= 0
=>2x^2+2y^2+2z^2-2xy-2yz-2xz >= 0
=>2x^2+2y^2+2z^2 >= 2xy+2yz+2xz
=>x^2+y^2+z^2 >= xy+yz+xz
nhần đổi của về rùi chuyển vế bạn sẽ dc (x-y)^2 + (y-z)^2 + (Z-X) ^2 >=0 dáu = xảy ra khi x=y=z , xong nhá
\(\frac{x^3}{y}+xy\ge2x^2\); \(\frac{y^3}{z}+yz\ge2y^2\); \(\frac{z^3}{x}+xz\ge2z^2\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(x^2+y^2+z^2\right)\)
Mặt khác ta có BĐT: \(x^2+y^2+z^2\ge xy+xz+yz\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(xy+xz+yz\right)\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+xz+yz\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\)
\(VT=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{z}\left(\dfrac{4}{x+y}\right)=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(z+x+y\right)^2}\ge16\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)
Ta có: \(\left\{{}\begin{matrix}x+y+z=0\\xy+yz+zx=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\2\left(xy+yz+zx\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2xy+2yz+2xz=0\\2xy+2yz+2xz=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy-2yz-2xz=0\)
\(\Rightarrow x^2+y^2+z^2=0\Rightarrow\left\{{}\begin{matrix}x^2\ge0\forall x\\y^2\ge0\forall y\\z^2\ge0\forall z\end{matrix}\right.\Rightarrow x^2+y^2+z^2\ge0\)
\("="\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
\(\Rightarrow x=y=z=0\Rightarrow dpcm\)
\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^z+z^2+0=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\Leftrightarrow x=y=z=0\)
b) Bằng chứ ^^
\(\left(x+y\right)^2=x^2+2xy+y^2=4xy\)
\(\Leftrightarrow x^2-2xy+y^2=0\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)
\(P=xy+yz+zx-2xyz=\left(xy+yz+zx\right)\left(x+y+z\right)-2xyz\)
\(P=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+xyz\ge0\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow z\le\dfrac{1}{3}\)
\(P=xy\left(1-2z\right)+z\left(x+y\right)=xy\left(1-2z\right)+z\left(1-z\right)\)
\(P\le\dfrac{\left(x+y\right)^2}{4}\left(1-2z\right)+z\left(1-z\right)=\dfrac{\left(1-z\right)^2\left(1-2z\right)}{4}+z\left(1-z\right)\)
\(P\le\dfrac{1+z^2-2z^3}{4}=\dfrac{1}{4}+\dfrac{z.z.\left(1-2z\right)}{4}\le\dfrac{1}{4}+\dfrac{1}{27.4}\left(z+z+1-2z\right)^3=\dfrac{7}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)
\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)
\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)
0\le xy+yz+zx-2xyz\le \frac{7}{27} - Diễn đàn Toán học