Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a) Ta có: \(A=\left(\dfrac{4x+5\sqrt{x}-1}{x\sqrt{x}+2x-\sqrt{x}-2}-\dfrac{3\sqrt{x}+1}{x+\sqrt{x}-2}\right):\dfrac{x+4\sqrt{x}+4}{x-1}\)
\(=\left(\dfrac{4x+5\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(3\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{4x+5\sqrt{x}-1-3x-3\sqrt{x}-\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)^2}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)^3}\)
\(=\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\)
b) Ta có: \(A-1=\dfrac{\sqrt{x}-1-x-4\sqrt{x}-4}{x+4\sqrt{x}+4}\)
\(=\dfrac{-\left(x+3\sqrt{x}+5\right)}{x+4\sqrt{x}+4}\)
\(=\dfrac{-\left(x+2\cdot\sqrt{x}\cdot\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{11}{4}}{x+4\sqrt{x}+4}< 0\forall x\) thỏa mãn ĐKXĐ
nên A<1
b: Xét ΔOAH vuông tại A có AH=AO
nên ΔOAH vuông cân tại A
\(\Leftrightarrow\widehat{AOH}=\widehat{AHO}=45^0\)
Xét ΔOAH vuông tại A có
\(OH^2=OA^2+AH^2\)
hay \(OH=8\sqrt{2}\left(cm\right)\)
1: Ta có: \(4x+3\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(4\sqrt{x}+3\right)=0\)
hay x=0
2: Ta có: \(\sqrt{4x^2-3}=2x+1\)
\(\Leftrightarrow4x^2-3=4x^2+4x+1\)
\(\Leftrightarrow4x=-4\)
hay x=-1(vô lý)
3: ta có: \(\sqrt{9x-6\sqrt{x}+1}=\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(\Leftrightarrow\left|3\sqrt{x}-1\right|=\sqrt{3}-1\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}=\sqrt{3}\left(x\ge\dfrac{1}{9}\right)\\3x=2-\sqrt{3}\left(0\le x< \dfrac{1}{9}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(nhận\right)\\x=\dfrac{2-\sqrt{3}}{3}\left(nhận\right)\end{matrix}\right.\)
bài 2
a) ĐKXĐ: a\(\ge\)0, a\(\ne\)1
b)P=\(\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\).\(\dfrac{1+\sqrt{a}}{\sqrt{a}}\)
P=\(\dfrac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{1+\sqrt{a}}{\sqrt{a}}\)
P=\(\dfrac{2}{1-\sqrt{a}}\)
c) thay a=4 vào biểu thức ta có
P=\(\dfrac{2}{1-\sqrt{4}}\)=\(\dfrac{2}{1-2}\)=-2
d) để P=9 thì
\(\dfrac{2}{1-\sqrt{a}}=9\)\(\Rightarrow\)2=9(1-\(\sqrt{a}\))
\(\Rightarrow\)2=9-\(9\sqrt{a}\)\(\Rightarrow\)\(9\sqrt{a}=7\)\(\Rightarrow\)\(\sqrt{a}=\dfrac{7}{9}\)
\(\Rightarrow a=\dfrac{49}{81}\)
bài 3
a) \(\sqrt{9x^2}=4\Rightarrow3x=4\)\(\Rightarrow\)\(x=\dfrac{4}{3}\)
b)\(\Rightarrow\)\(\left(x-\sqrt{5}\right)^2\)=0\(\Rightarrow x-\sqrt{5}=0\)
\(\Rightarrow x=\sqrt{5}\)
1: Ta có: \(\sqrt{x^2+3x+2}=1\)
\(\Leftrightarrow x^2+3x+2=1\)
\(\Leftrightarrow x^2+3x+1=0\)
\(\text{Δ}=3^2-4\cdot1\cdot1=5\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{5}}{2}\\x_2=\dfrac{-3+\sqrt{5}}{2}\end{matrix}\right.\)
Bạn k thể trả lời hết đc à?