K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{2a+b+c}{a}=\frac{2b+c+a}{b}=\frac{2c+a+b}{c}=\frac{2a+b+c+2b+c+a+2c+a+b}{a+b+c}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)

\(\Rightarrow\frac{2a+b+c}{a}=4\Rightarrow2a+b+c=4a\Rightarrow b+c=4a-2a=2a\)

          \(\frac{2b+c+a}{b}=4\Rightarrow2b+c+a=4b\Rightarrow c+a=4b-2b=2b\)

          \(\frac{2c+a+b}{c}=4\Rightarrow2c+a+b=4c\Rightarrow a+b=4c-2c=2c\)   

Suy ra \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

Vậy P=8

27 tháng 8 2016

Thay a = -1 , b=1 vào biểu thức A 

=> A = 5.(-1)^3.1^8 = - 5

Thay a = -1 , b= 2 vào biểu thức B

=>B = -9.(-1)^4 . 2^2 = - 36

Ta có : 

C = ax + ay + bx + by = a(x+y) + b(x+y) = (x+y)(a+b)

Thay a+b = - 3 , x+y = 17 vào biểu thức C

C = ( -3)(17) = -51

12 tháng 11 2016

Giải:

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)

\(\Rightarrow a=2k,b=3k,c=4k\)

Ta có: \(\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)

\(=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}\)

\(=\frac{2^2.k^2+3^2.k^2+2.4^2.k^2}{2^2.k^2-4.3^2.k^2+4^2.k^2}\)

\(=\frac{4.k^2+9.k^2+32.k^2}{4.k^2-36.k^2+16.k^2}\)

\(=\frac{k^2.\left(4+9+32\right)}{k^2.\left(4-36+16\right)}\)

\(=\frac{45}{-16}\)

 

12 tháng 11 2016

\(A=\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow a=2k;b=3k;c=4k\)

Suy ra \(A=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}=\frac{4k^2+9k^2+2\cdot16k^2}{4k^2-4\cdot9k^2+16k^2}\)

\(=\frac{k^2\left(4+9+32\right)}{k^2\left(4-36+16\right)}=\frac{45}{-16}=-\frac{45}{16}\)

14 tháng 12 2017

Đặt a/2 = b/5 = c/7 => a=2k,b=5k,c=7k

Ta có: \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)

30 tháng 8 2017

a) Theo đề ta có :

\(A=\frac{3a-2b}{a-3b}\) với \(\frac{a}{b}=\frac{10}{3}\)

\(\frac{a}{b}=\frac{10}{3}\) \(\Rightarrow a=\frac{10}{3}.b\)

Thay a = \(\frac{10b}{3}\) vào \(\frac{3a-2b}{a-3b}\)

\(\Rightarrow\frac{3a-2b}{a-3b}=\frac{3.\frac{10b}{3}-2b}{\frac{10b}{3}-3b}\) \(=\frac{10b-2b}{\frac{10b}{3}-\frac{9b}{3}}=\frac{8b}{\frac{b}{3}}=8b:\frac{b}{3}=8b.\frac{3}{b}=8.3=24\)

b) Theo đề ta có :

a - b = 3 => a = b + 3 

Thay a = b+3 vào \(B=\frac{a-8}{a-5}-\frac{4a-b}{3a+3}\)

\(\Rightarrow B=\frac{b+3-8}{b+3-5}-\frac{4.\left(b+3\right)-b}{3.\left(b+3\right)+3}\) \(=\frac{b-5}{b-2}-\frac{4b+12-b}{3b+9+3}=\frac{b-2-3}{b-2}-\frac{3b+12}{3b+12}\)

\(=\frac{b-2}{b-2}-\frac{3}{b-2}-1\) \(=1-\frac{3}{b-2}-1=0-\frac{3}{b-2}=-\frac{3}{b-2}\)

k đi!!!

26 tháng 12 2017

a)Ta có 7x=2y

Suy ra:\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)

Và x-y=16

Áp dụng công thức của dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)=\(\dfrac{x-y}{\dfrac{1}{7}-\dfrac{1}{2}}\)=\(\dfrac{16}{\dfrac{-5}{14}}\)=\(\dfrac{-224}{5}\)

Từ \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{-224}{5}\)suy ra :x=\(\dfrac{-224}{5}\cdot\dfrac{1}{7}\)=\(-\dfrac{32}{5}\)

\(\dfrac{y}{\dfrac{1}{2}}=-\dfrac{224}{5}\)suy ra:y=\(-\dfrac{224}{5}\cdot\dfrac{1}{2}=-\dfrac{112}{5}\)

27 tháng 12 2017

c)Ta có :\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

Mà a+2b-c=-20

Suy ra:\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:

\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}=\dfrac{a+2b-c}{2+6-4}=-\dfrac{20}{4}=-5\)

Từ \(\dfrac{a}{2}=-5,suyra:a=-5\cdot2=-10\)

\(\dfrac{b}{3}=-5,suyra:b=-5\cdot3=-15\)

\(\dfrac{c}{4}=-5,suyra:c=-5\cdot4=-20\)

Vậy a=-10,b=-15,c=-20