Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=a\left(2a-3\right)-2a\left(a+1\right)+5\)
\(=2a^2-3a-2a^2-2a+5\)
\(=\left(2a^2-2a^2\right)-\left(3a+2a\right)+5\)
\(=-5a+5=-5\left(a-1\right)⋮5\)
Gấp không có nghĩa là cho lên CHH nha :D
\(a^3-2a^2+a^2b+2a+2b=4\Leftrightarrow a^2\left(a+b\right)+2\left(a+b\right)-2a^2-4=0\Leftrightarrow\left(a^2+2\right)\left(a+b\right)-2\left(a^2+2\right)=0\Leftrightarrow\left(a^2+2\right)\left(a+b-2\right)=0\)
Vì \(a^2+2>0\forall a\)
\(\Rightarrow a+b-2=0\Leftrightarrow a+b=2\)
\(P=\frac{1}{a}+\frac{1}{b}\)
Áp dụng BĐT Cauchy Schwarz dạng Engel:
\(\Rightarrow P=\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}=\frac{4}{2}=2\)
Vậy \(Min_P=2\Leftrightarrow a=b=1\)
\(\Leftrightarrow a^2\left(a+b-2\right)+2\left(a+b-2\right)=0\)
\(\Leftrightarrow\left(a^2+2\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow a+b=2\)
\(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=2\)
1, \(4b^2+a^2+4ab=\left(2b+a\right)^2\)
2, \(-49-2a^4+14\sqrt{2}a^2=-\left(2a^4-2.7\sqrt{2}a^2+49\right)=-\left(\sqrt{2}a^2-7\right)^2\)
1: \(a^2+4ab+4b^2=\left(a+2b\right)^2\)
2: \(-49-2a^4+14\sqrt{2a^2}\)
\(=-\left(2a^4-2\cdot\sqrt{2a^2}\cdot7+49\right)\)
\(=-\left(\sqrt{2a^2}-7\right)^2\)
Lời giải:
Thời gian Nam đi quãng đường AB: $\frac{20}{x}$ (giờ)
Thời gian Nam nghỉ: $1$ (giờ)
Thời gian Nam đi quãng đường BC: $\frac{12}{x-3}$ (giờ)
Tổng thời gian Nam đi từ A-C là: $\frac{20}{x}+1+\frac{12}{x-3}$ (giờ)
Dung à mày (:
Ta có \(\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a}{x+1}+\frac{b}{\left(x+1\right)^2}+\frac{c}{x+2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a\left(x+1\right)\left(x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{b\left(x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{c\left(x+1\right)^2}{\left(x+1\right)^2\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a\left(x^2+3x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{bx+2b}{\left(x+1\right)^2\left(x+2\right)}+\frac{c\left(x^2+2x+1\right)}{\left(x+1\right)^2\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{ax^2+3ax+2a+bx+2b+cx^2+2cx+c}{\left(x+1\right)^2\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{x^2\left(a+c\right)+x\left(3a+b+2c\right)+\left(2a+2b+c\right)}{\left(x+1\right)^2\left(x+2\right)}\)
\(\Rightarrow1=x^2\left(a+c\right)+x\left(3a+b+2c\right)+\left(2a+2b+c\right)\)
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a+c=0\\3a+b+2c=0\\2a+2b+c=1\end{cases}}\)=> Chịu :)) Khó quá không làm được ... Hoặc do đề sai ;-;
Không sai == Trong sách Nâng cao và phát triển toán 8 tập 1 trang 33 bài 123 ý c
T cũng chịu '-'
\(a^2-2a+1=\left(a-1\right)^2=\left(a-1\right)\left(a-1\right)=a.\left(a-1\right)-1\left(a-1\right)\)
\(a^2-2a+1\)
\(=a^2-a-a+1\)
\(=a\left(a-1\right)-\left(a-1\right)\)
\(=\left(a-1\right)^2\)