K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài toán này là bài toán xác suất. Ta cần tính xác suất để bạn Bình thắng trong trò chơi. Bước 1: Xác định loại bài toán và ý tưởng giải quyết - Đây là bài toán xác suất. - Ý tưởng giải quyết: + Ta sẽ tính số cách chọn ra tập con lớn nhất của tập thẻ ban đầu thỏa mãn điều kiện đã cho. + Sau đó, ta sẽ tính số cách chọn một thẻ từ tập thẻ đã chọn và tính tổng số cách chọn một thẻ từ tập thẻ ban đầu. + Cuối cùng, ta sẽ tính xác suất theo công thức xác suất. Bước 2: Giải bài toán - Để tính số cách chọn ra tập con lớn nhất của tập thẻ ban đầu thỏa mãn điều kiện đã cho, ta sẽ sử dụng nguyên lý bù trừ (principle of inclusion-exclusion). - Gọi A_i là tập các số ghi trên thẻ i và B là tập các thẻ được chọn ra bởi bạn An. - Ta có công thức tính số cách chọn tập con lớn nhất của tập thẻ ban đầu thỏa mãn điều kiện đã cho: |A_1 ∩ A_2 ∩ ... ∩ A_n| = |A_1| + |A_2| + ... + |A_n| - |A_1 ∪ A_2| - |A_1 ∪ A_3| - ... - |A_{n-1} ∪ A_n| + |A_1 ∪ A_2 ∪ A_3| + ... + (-1)^{n-1} |A_1 ∪ A_2 ∪ ... ∪ A_n| - Tiếp theo, ta sẽ tính số cách chọn một thẻ từ tập thẻ đã chọn và tính tổng số cách chọn một thẻ từ tập thẻ ban đầu. - Số cách chọn một thẻ từ tập thẻ đã chọn là |B|. - Tổng số cách chọn một thẻ từ tập thẻ ban đầu là |A_1 ∪ A_2 ∪ ... ∪ A_n|. - Cuối cùng, ta sẽ tính xác suất theo công thức xác suất: P(\text{"Bạn Bình thắng"}) = \frac{|B|}{|A_1 ∪ A_2 ∪ ... ∪ A_n|} - Để tính xác suất, ta cần tính các giá trị |A_i|, |A_i ∪ A_j|, |A_1 ∪ A_2 ∪ A_3|, ..., |A_1 ∪ A_2 ∪ ... ∪ A_n|. Để tiếp tục giải bài toán, cần tính các giá trị |A_i|, |A_i ∪ A_j|, |A_1 ∪ A_2 ∪ A_3|, ..., |A_1 ∪ A_2 ∪ ... ∪ A_n|.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 51, 52}.

Số phần tử của B là 52.

a) Trong các số từ 1 đến 52 có ba số chia 17 dư 2 là: 2, 19, 36. Trong 3 số trên, có một số chia 3 dư 1 là 19.

Vậy có một kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia cho 17 dư 2 và chia cho 3 dư 1” là: 19.

Vì thế, xác suất của biến cố trên là: \(\dfrac{1}{{52}}\)

b) Có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có chứa chữ số 5” là: 5, 15, 25, 35, 45, 50, 51, 52.

Vì thế, xác suất của biến cố trên là: \(\dfrac{8}{{52}} = \dfrac{2}{{13}}\)

a: A={1;2;3;...;10}

b: B={2;3;5;7}

=>P(B)=4/10=2/5

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Tập hợp M gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là:

M  = {1, 2, 3, …, 51, 52}

b) Trong các số 1, 2, 3, …, 51, 52, có chín số bé hơn 10 là: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Vậy có chín kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ để rút ra là số bé hơn 10” là: 1, 2, 3, 4, 5, 6, 7, 8, 9 (lấy ra từ tập hợp M  = {1, 2, 3, …, 51, 52}).

c) Trong các số 1, 2, 3, …, 51, 52, có ba số chia cho 4 và 5 đều có số dư  là 1 là: 1, 21, 41

Vậy có ba kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ để rút ra là số chia cho 4 và 5 đều có số dư là 1” là: 1, 21, 41 (lấy ra từ tập hợp M  = {1, 2, 3, …, 51, 52}).

11 tháng 9 2023

đáp án ....... ...¿.¿¿¿

n(omega)=12

A={4;6;9;10;12}

=>n(A)=5

=>P(A)=5/12

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Sự kiện trên còn được gọi là biến cố trong trò chơi rút thẻ từ trong hộp.

4 tháng 5 2023

a,  Rút ngẫu nhiên có 32 cách 

A : Rút thể chia hết cho 9 

\(\Rightarrow A=\left\{9;18;27\right\}\)  có 3 cách lấy

Xác xuất \(\dfrac{3}{32}\)

b,  B : Rút thẻ có số 5 

\(\Rightarrow B=\left\{5;15;25\right\}\) 

=> có 3 cách 

Xác xuất \(\dfrac{3}{32}\)

Số cách rút ngẫu nhiên 2 thẻ khác nhau trong hộp là:

\(A^2_4=12\left(cách\right)\)

TH1: hai thẻ rút ra đều là số chẵn

Thẻ đầu tiên có 2 cách rút

Thẻ thứ hai có 1 cách rút

=>Có 2*1=2 cách rút

TH2: Trong hai thẻ rút ra có 1 thẻ chẵn, 1  thẻ lẻ

Số cách rút ra 1 thẻ chẵn là 2 cách

Số cách rút ra 2 thẻ chẵn là 2 cách

=>Có 2*2=4 cách rút

Tổng số cách để tích hai thẻ rút ra là số chẵn là:

2+4=6(cách)

Xác suất để rút ra hai thẻ có tích là số chẵn là:

\(\dfrac{6}{12}=\dfrac{1}{2}\)