K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

Đáp án B

Một người bán gạo muốn đóng một thùng tôn đựng gạo có thể tích không đổi bằng 8 m 3 , thùng tôn hình hộp chữ nhật có đáy là hình vuông, không nắp. Trên thị trường, giá tôn làm đáy thùng là 100.000 / m 2  và giá tôn làm thành xung quanh thùng là 50.000 / m 2 ...
Đọc tiếp

Một người bán gạo muốn đóng một thùng tôn đựng gạo có thể tích không đổi bằng 8 m 3 , thùng tôn hình hộp chữ nhật có đáy là hình vuông, không nắp. Trên thị trường, giá tôn làm đáy thùng là 100.000 / m 2  và giá tôn làm thành xung quanh thùng là 50.000 / m 2 . Hỏi người bán gạo đó cần đóng thùng đựng gạo với cạnh đáy bằng bao nhiêu để chi phí mua nguyên liệu là nhỏ nhất ?

<!-- MathType@Translator@5@5@MathML3 (namespace attr).tdl@MathML 3.0 (namespace attr)@ -->


<math display='block' xmlns='http://www.w3.org/1998/Math/MathML'>


 <semantics>


  <mrow>


   <mn>50.000</mn><mo>/</mo><msup>


    <mi>m</mi>


    <mn>2</mn>


   </msup>


   </mrow>


  <annotation encoding='MathType-MTEF'>MathType@MTEF@5@5@+=


  feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn


  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr


  4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9


  vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x


  fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaaic


  dacaGGUaGaaGimaiaaicdacaaIWaGaai4laiaad2gadaahaaWcbeqa


  aiaaikdaaaaaaa@3CDA@


  </annotation>


 </semantics>


</math>


<!-- MathType@End@5@5@ -->


 

B. 1,5m

C. 2m

A. 1m

1
11 tháng 8 2017

Đáp án C

Phương pháp: Lập hàm số chi phí theo một ẩn sau đó tìm giá trị nhỏ nhất của hàm số đó.

Cách giải: Gọi a là chiều dài cạnh đáy hình vuông của hình hộp chữ nhật và b là chiều cao của hình hộp chữ nhật ta có  a 2 b = 8 a , b > 0 ⇒ a b = 8 a

Diện tích đáy hình hộp là a 2 và diện tích xung quanh là 4ab nên chi phí để làm thùng tôn là  100 a 2 + 50.4 a b = 100 a 2 + 200 a b = 100 a 2 = 100. 8 a = 100 a 2 + 1600 a = 100 a 2 + 16 a

Áp dụng BĐT Cauchy ta có  a 2 + 16 a = a 2 + 8 a + 8 a ≥ 3 a 2 + 8 a + 8 a 3 = 3.4 = 12

Dấu bằng xảy ra khi và chỉ khi  a 2 + 8 a ⇔ a = 2.

Vậy chi phí nhỏ nhất bằng 1200000 đồng khi và chỉ khi cạnh đáy hình hộp bằng 2m.

14 tháng 12 2019

Gọi chiều dài tấm tôn là x (cm) (0 < x < 60) Suy ra chiều rộng: 60 - x (cm)

Giả sử quấn tấm tôn theo cạnh có kích thước x =>  bán kính đáy r = x 2 π  và chiều cao h = 60 - x

Khi đó 

Chọn C.

27 tháng 3 2019

31 tháng 5 2018

Đáp án A

29 tháng 6 2017

Đáp án B

23 tháng 8 2017



21 tháng 6 2019

Chọn A

Phương pháp: Sử dụng công thức thể tích hình trụ và công thức thể tích hình hộp.

Cách giải:

28 tháng 11 2018

Đáp án A.

Gọi cạnh đáy của khối chóp là x với

0 < x < 5 2 2 .  

Chiều cao của khối chóp là

h = 5 2 2 − x 2 2 − x 2 2 = 25 − 5 x 2 2 .

Vậy thể tích của khối chóp là

V = 1 3 . h . S = 1 3 . x 2 . 25 − 5 x 2 2 = 1 3 25 x 4 − 5 x 5 2 2 .

Xét hàm số f x = 25 x 4 − 5 x 5 2  trên 0 ; 5 2 2 ,

ta có  f ' x = 100 x 3 − 25 x 4 2 = 0 ⇔ x = 2 2 .

Suy ra giá trị lớn nhất của thể tích là  V = 1 3 . f 2 2 2 = 4 10 3 .