Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hội trường có a dãy và b là số ghế của mỗi dãy. (a,b∈N∗a,b∈N∗).
Ta có phương trình: ab=500ab=500 và
⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25
Vậy lúc đầu người ta định xếp 2525 dãy ghế.
gọi dãy ghế lúc đầu là x (đk : x>0, x thuộc Z) thì số dãy ghế sau khi xếp lại là x+5
theo đề bài, ta có :
số ghế mỗi dãy lúc đầu là 120/x
số ghế mỗi dãy sau khi xếp lại là (120/x)-4 / x+5 = 120-4x / x(x+5)
ta có phương trình : 120/x - 4 = 120-4x / x(x+5)
<=> 120-4x / x = 120-4x / x(x+5)
<=> (120-4x)(x+5) / x(x+5) = 120-4x / x(x+5)
<=> (120-4x)(x+5)=120-4x
<=> (120-4x)(x+5) - (120-4x) = 0
<=> (120-4x)(x+5-1) = 0
<=> (120-4x)(x+4) = 0
<=> 120-4x = 0
x+4 =0
<=> x = 30 (thỏa đk)
x = -4 (ko thỏa đk)
vậy số dãy ghế ban đầu là 30
Chẳng phải đề bài cho số ghế có trong hội trường là 208 ghế rồi sao?
Vậy số dãy ghế ban đầu là 10 dãy và số người ngồi trên 1 dãy là 8 người.
Đáp án : Hội trường có 10 dãy ghế hoặc 20 dãy ghế, giải thích các bước giải :
Gọi số ghế ban đầu là x, x thuộc N* => ban đầu mỗi dãy ghế có 200/x ghế
=> Vì phải kê thêm 2 dãy ghế => Ta có x + 2 dãy ghế
=> Vì mỗi dãy phải ngồi thêm 2 người => mỗi dãy lại có : 200/x + 2 ghế
=> Số người đc ngồi là : ( x + 2 ) . ( 200/x + 2 ). Vì có 6 người k có ghế nên ( x + 2). ( 200/x + 2 ) +6= 270
=> ( x +2). ( 200/x + 2) = 264
=> ( x +2). ( 200 +2x ) = 264x
=> 2x2 + 400 + 204x = 264x
=> 2x2 - 60x + 4000 = 0
=> 2(x-10 ). ( x -20 ) = 0, Kết luận vậy từ đây ta có thể suy ra đc x thuộc { 10; 20 }
Gọi x là số dãy ghế; y là số người trên mỗi dãy ghế (x,y>0)
Ta có tổng cộng 80 người nên x*y =80 <=> x =80/y (1)
Nếu bớt đi 2 dãy ghế tức x-2 thì mỗi dãy còn lại phải xếp thêm 2 người tức y+2
Ta có: (x-2)*(y+2) = 80 (2)
Thay (1) vào (2) ta có: 2y^2 +4y -160 =0
<=> y=8 => x=10
Vậy có 10 dãy ghế và có 8 người trên mỗi dãy
Gọi x là số dãy ghế trong phòng họp ( x nguyên ; x>2)
Số người ngồi trên 1 dãy là \(\frac{80}{x}\)(người)
Nếu bới đi 2 dãy thì số dãy ghế còn lại là : x - 2 (dãy)
Số người ngồi trên mỗi dãy sẽ là: \(\frac{80}{x-2}\)(người )
Ta có phương trình :
\(\frac{80}{x-2}-\frac{80}{x}=2\Leftrightarrow\frac{40}{x-2}-\frac{40}{x}=1\Leftrightarrow x^2-2x-80=0\)
Giaỉ phương trình ta được \(x_1=10;x_2=-8\left(lọai\right)\)
Vậy số dãy ghế lúc đầu là 10 dãy và mỗi dãy xếp 8 người ngồi
Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x và x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại) vì 250 không chia hết cho 30@x_2=25 (nhận))┤
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Cách 1:
Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0)
Ta có tổng cộng 250 người nên x.y =250 (1)
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2)
Từ (1) và (2) ta có hệ:
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Gọi số dãy ghế trong hội trường lúc đầu là x (x∈N∗)(dãy ghế)
Số ghế lúc đầu ở mỗi dãy là: 300x (ghế)
Tổng số ghế ở hội trường lúc sau là: 300−11=289. (ghế)
Vì nếu mỗi dãy thêm 2 ghế và bớt 3 dãy thì số ghế của hội trường là 289 ghế nên ta có phương trình:
(x−3)(300\x+2)=289
⇔(x−3)(300+2x\x)=289
⇔(x−3)(300+2x)=289x
⇔300x+2x2−900−6x=289x
⇔2x2+5x−900=0
Δ=52−4.2.(−900)=7225>0
Phương trình có 2 nghiệm phân biệt:
x1=−5+√7225\4=20(tm)
x2=−5−√7225\4=−452(ktm)
Vậy số dãy ghế trong hội trường lúc đầu là 20 dãy ghế.