Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x=\dfrac{18}{z};y=10\Leftrightarrow x:y=\dfrac{18}{z}:10=\dfrac{9}{5z}=9:5z\)
\(b,y=x:\dfrac{9}{5z}=\dfrac{9}{5xz}\)
\(c,x=-2\Leftrightarrow z=-9\Leftrightarrow y=\dfrac{9}{5\cdot\left(-9\right)\cdot\left(-2\right)}=\dfrac{1}{10}\\ x=\dfrac{1}{5}\Leftrightarrow z=90\Leftrightarrow y=\dfrac{9}{5\cdot\dfrac{1}{5}\cdot90}=\dfrac{1}{10}\)
\(A=\left|x+\frac{3}{2}\right|\)
Vì \(\left|x+\frac{3}{2}\right|\ge0\)
Vậy \(GTNN_A=0\)tại \(x=\frac{-3}{2}\)
\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)
Vì \(\left|x-\frac{1}{2}\right|\ge0\)nên \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(GTNN_B=\frac{3}{4}\)tại \(x=\frac{1}{2}\)
Vì \(\left(x-\frac{1}{5}\right)^2\ge0\).Dấu "=" xảy ra khi \(x=\frac{1}{5}\)
\(\Rightarrow A=\left(x-\frac{1}{5}\right)^2+\frac{11}{15}\ge\frac{11}{15}\)
Nên GTNN của A là \(\frac{11}{15}\) xảy ra khi \(x=\frac{1}{5}\)
\(xy=\frac{1}{t}.txy\le\frac{t^2x^2+y^2}{2t}=\frac{\left(3+\sqrt{5}\right)x^2+y^2}{1+\sqrt{5}}\)\(t^2=\frac{3+\sqrt{5}}{2}\)
\(\frac{2\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\left(3+\sqrt{5}\right)\left(2x^2+y^2+z^2+1\right)}\)
\(K=\frac{x^2+y^2+z^2+1}{xy+yz+z}=\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{2.\frac{1+\sqrt{5}}{2}x.y+\left(1+\sqrt{5}\right)yz+2.\frac{1+\sqrt{5}}{2}.z}\)
\(\ge\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\frac{3+\sqrt{5}}{2}x^2+y^2+\frac{1+\sqrt{5}}{2}\left(y^2+z^2\right)+z^2+\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{\frac{3+\sqrt{5}}{2}}=\sqrt{5}-1=k\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=1\\y=\frac{1+\sqrt{5}}{2}\\z=\frac{1+\sqrt{5}}{2}\end{cases}}\)
\(M=\frac{x^2+y^2+z^2+1}{xy+y+z}=\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{2.x.\frac{\sqrt{5}-1}{2}y+\left(\sqrt{5}-1\right)y+2.\frac{\sqrt{5}-1}{2}.z}\)
\(\ge\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{x^2+\frac{3-\sqrt{5}}{2}y^2+\frac{\sqrt{5}-1}{2}\left(y^2+1\right)+\frac{3-\sqrt{5}}{2}+z^2}=\sqrt{5}-1=m\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\y=1\\z=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
\(km+k+m=4\)
a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
*TH1: \(x< 2016\):
\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)
*TH2: \(2016\le x< 2017\):
\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)
*TH3: \(2017\le x< 2018\):
\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)
*TH4: \(x\ge2018\):
\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)
Vậy GTNN của P là 2 khi x = 2017.
b) \(x-2xy+y-3=0\)
\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
2x-1 | 5 | -5 | 1 | -1 |
1-2y | 1 | -1 | 5 | -5 |
x | 3 | -2 | 1 | 0 |
y | 0 | 1 | -2 | 3 |
Tìm GTNN của biểu thức :
A = | 2x - 9 | + 2018
Vì |2x - 9| lớn hơn hoặc bằng 0 với mọi x € Z
=> | 2x - 9| + 2018 lớn hơn hoặc bằng 2018 với mọi x € Z .
Dấu " = " xảy ra <=> | 2x - 9 | = 0
<=> 2x - 9 = 0
<=> 2x = 9
<=> x = 4,5
Vậy Amin = 2018 <=> x = 4,5
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8