Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài toán ta có:
5*t1=5*t2=4*t3=3*t4(1) và t1+t2+t3+t4=59(2)
(1)=>t1=t2=(4*t3)/5=(3*t4)/5(3)
Từ (2) và (3) => t1+t1+(5*t1)/4+(5*t1)/3=59
=> t1=12(s)
=> cạnh hình vuông: 5*12=60(m)
vì trên cùng một quãng đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch
gọi x,y,z là thời gian chuyển động lần lượt với các vận tốc 5m/s ; 4m/s ; 3m/s
Ta có : 5x = 4y = 3z và x + x + y + z = 59
hay \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{3}}=\frac{x+x+y+z}{\frac{1}{5}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}}=\frac{59}{\frac{59}{60}}=60\)
Do đó :
\(x=60.\frac{1}{5}=12\); \(y=60.\frac{1}{4}=15\); \(z=60.\frac{1}{3}=20\)
Vậy cạnh hình vuông là : 5 . 12 = 60
Tham Khảo:
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
Hay
Do đó: x = 60. = 12
y = 60. = 15
z = 60. = 20
Vậy cạnh hình vuông là 5.12 = 60m