Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>AD=ED
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>E,D,F thẳng hàng
c: BA=BA
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
A: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
b: BA=BE
DA=DE
=>BD là trung trực của AE
DA=DE
DE<DC
=>DA<DC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>AD=ED
b: BA=BE
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
a) Xét tam giác \(ABD\)và tam giác \(EBD\)có:
\(AB=EB\)
\(\widehat{ABD}=\widehat{EBD}\)
\(BD\)cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
\(\Rightarrow\widehat{DEB}=\widehat{DAB}=90^o\)
do đó \(DE\perp BC\).
\(DE=DA\Rightarrow D\)thuộc đường trung trực của \(AE\).
\(BA=BE\)suy ra \(B\)thuộc đường trung trực của \(AE\).
Do đó \(BD\)là đường trung trực của \(AE\)nên \(AE\)vuông góc với \(BD\).
b) \(AD=DE< DC\)(cạnh góc vuông nhỏ hơn cạnh huyền)
c) Xét tam giác \(ADF\)và tam giác \(EDC\)có:
\(DA=DE\)
\(CE=FA\)
\(\widehat{DAF}=\widehat{DEC}\left(=90^o\right)\)
\(\Rightarrow\Delta ADF=\Delta EDC\left(c.g.c\right)\)
d) \(\Delta ADF=\Delta EDC\)suy ra \(\widehat{CDE}=\widehat{ADF}\)mà hai góc này ở vị trí đối đỉnh nên \(E,D,F\)thẳng hàng.
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
c: BA=BE
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC