K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

DO đó: ΔBAC vuông tạiA

Xét ΔBAC vuông tại A có \(\sin ACB=\dfrac{AB}{BC}=\dfrac{1}{2}\)

nên \(\widehat{ACB}=30^0\)

=>\(\widehat{ABC}=60^0\)

\(AC=\sqrt{4R^2-R^2}=R\sqrt{3}\)

b: Xét (O) có

OH là bán kính

AD là dây

OH\(\perp\)AD tại H

Do đó: H là trung điểm của AD

Xét ΔACD có

CH là đường cao

CH là đường trung tuyến

Do đó; ΔACD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

=>\(\widehat{ACD}=60^0\)

=>ΔACD đều

c: Xét ΔEAO và ΔEDO có

EA=ED

OA=OD

EO chung

Do đó; ΔEAO=ΔEDO

Suy ra: \(\widehat{EAO}=\widehat{EDO}=90^0\)

=>EA là tiếp tuyến của (O)

24 tháng 10 2021

a, ^BAC = 900 ( điểm thuộc đường tròn nhìn đường kính ) 

Theo Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=\sqrt{4R^2-R^2}=\sqrt{3}R\)

sinB = \(\frac{AC}{BC}=\frac{\sqrt{3}R}{2R}=\frac{\sqrt{3}}{2}\Rightarrow\)^B = 600

Vì ^C ; ^B phụ nhau => ^C = 900 - 600 = 300 

b, Vì AH là đường đường cao với D thuộc AH 

=> AD vuông BC (1) 

Vì AD vuông BC => AH = HD (2) 

Từ (1) ; (2) suy ra BC là đường trung trục AD 

Vì BC là đường trung trực => AC = AD 

=> tam giác ACD cân => ^CAD = ^CDA (3) 

Xét tam giác AHC vuông tại H có ^HAC và ^C phụ nhau 

=> ^HAC = 900 - 300 = 600 (4) 

Từ (3) ; (4) suy ra tam giác ADC đều 

c, ^ABC = 1/2 sđ cung AC ( góc nội tiếp chắn cung AC ) 

^CBD = 1/2 sđ cung CD ( góc nội tiếp chắn cung CD ) 

mà BC là đường trung trực nên AH = HD và BC vuông AD 

=> C là điểm chính giữa cung AD => cung AC = cung CD (5) 

Lại có ^AOC = 1/2 sđ cung AC ( góc ở tâm ) => ^AOC = ^ABC = 1/2 sđ cung AC 

^COD = 1/2 sđ cung CD ( góc ở tâm ) => ^COD = ^CBD = 1/2 sđ cung CD

Lại có (5) suy ra ^AOC = ^COD 

Xét tam giác OAE và tam giác ODE 

OA = OD = R 

OE _ chung 

^AOE = ^EOD ( cmt ) 

Vậy tam giác OAE = tam giác ODE 

=> ^OAE = ^ODE = 900

=> OA vuông AE 

Vậy AE là tiếp tuyến của đường tròn (O) 

d, bạn tính lần lượt EB ; CH ; BH ; EC xong nhân vào là ra nhé 

19 tháng 12 2018

a,△ABO có AB=OB=OA=R
suy ra △ABO đều \(\Rightarrow\) \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
△ABC vuông ở A( BC=2R)
AD Py ta go : AC=\(\sqrt{BC^2-AB^2}=\sqrt{4r^2-r^2}=r\sqrt{3}\)
b,Đường kính vuông góc với dây thì đi qua trung điểm của dây ấy
=> OB\(\perp AD\)=>\(BC\perp AD\)
=> BC là trung trực của AD
Ta có CH vừa là trung tuyến (AH=HD) vừa là đường cao của △ADC
=> tam giác ADC đều
c, Vì BC là đường trung trực của AD
mà E\(\in\)BC => ED=EA
△EDO=△EAO (c.c.c)
=>\(\widehat{ADO}=\widehat{EAO}=90^o\)
=>EA⊥AO tại A thuộc (O)
suy ra EA là tiếp tuyến của (O)
d, Ta có góc EAO= \(90^o\)\(\widehat{BAO}=60^o\)(cmt)
=> góc EAB= \(30^o\)
Xét △EAH có \(\widehat{EAB}=\widehat{HAB}=30^o\)
=> AB là tia phân giác
=>\(\dfrac{BE}{BH}=\dfrac{AE}{AH}\)(1)
Vì AC⊥AB=> AC là phan giác ngoài △EAH
\(\Rightarrow\dfrac{CE}{CH}=\dfrac{AE}{AH}\left(2\right)\)
từ (1) và (2) => \(\dfrac{BE}{BH}=\dfrac{CE}{CH}\Rightarrow BE.CH=BH.CE\)(đpcm)

19 tháng 12 2018

a) Xét tam giác ABO có:AB=AO=BO=R

⇒△ABO đều⇒\(\widehat{ABC}=60^0\)

Góc BAC nội tiếp chắn nửa đường tròn nên bằng 90 độ⇒\(\widehat{ACB}=30^0\)

Ta có: AB=R;BC=2R⇒AC=\(\sqrt{4R^2-R^2}=R.\sqrt{3}\)

b) Xét (O) có: BC là đường kính vuông góc với dây AD⇒BC vuông góc với AD tại trung điểm H của AD⇒BC là trung trực của AD

Xét △ADC có CH vừa là đường cao, vừa là đường trung tuyến⇒△ADC cân tại C

\(\widehat{CAD}=60^0\)

Suy ra △ADC đều

c) Chứng minh tứ giác ACDE là hình thoi⇒DC//AE

Mà OA vuông góc với DC do△ADC đều⇒OA⊥OE⇒AE là tiếp tuyến của (O)

d) Ta có: BE=R;CH=\(\dfrac{3R}{2}\);BH=\(\dfrac{R}{2}\);EC=3R

Vậy EB.CH=\(\dfrac{R.3R}{2}=\dfrac{3R^2}{2}\)

BH.CE=\(\dfrac{3R.R}{2}=\dfrac{3R^2}{2}\)

Vậy \(EB.CH=BH.EC\)