Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT \(\Rightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)
\(\Rightarrow-4x=-4\) \(\Leftrightarrow x=1\)
Vậy \(x=1\)
Ta có: \(2x\left(x+1\right)-3\left(x+2\right)=x\left(2x-1\right)+4\left(x-2\right)-2\)
\(\Leftrightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)
\(\Leftrightarrow2x^2-x-6=2x^2+3x-10\)
\(\Leftrightarrow2x^2-x-6-2x^2-3x+10=0\)
\(\Leftrightarrow-4x+4=0\)
\(\Leftrightarrow-4x=-4\)
hay x=1
Vậy: x=1
- Bài1:Tìm các số nguyên X sao cho: |x-2|=2x+8 2.Bài2:Tìm các cặp số nguyên X ,y sao cho:(X-1).(y+2)=3
a) 10-x-5=-5-7-11
=> 5 - x = -23
=> x = 28
b) |x| -3=0
=> |x| = 3
=> x = 3 hoặc x -3
c) ( 7-|x| ) .(2x-4)=0
=> 7 - |x| = 0 hoặc 2x - 4 = 0
=> |x| = 7 hoặc 2x = 4
=> x = 7 hoặc x = - 7 hoặc x = 2
c)2+3x=-15-19
=> 2 + 3x = -34
=> 3x = 36
=> x = 12
Bạn tham khảo nha!
3xy + x - y = 1 <=> 9xy + 3x - 3y = 3 <=> 3x(3y+1) - 3y-1 = 3-1
<=> (3y+1)(3x-1) = 2 (♣)
vì x, y thuộc Z nên (3y+1) và (3x-1) thuộc Z ; từ (♣) ta có 4 khã năng:
* TH1:
{ 3y+1 = -1 => y ko thuộc Z nên loại
{ 3x-1 = -2
* TH2:
{ 3y+1 = 2 vẫn có y ko thuộc Z, nên loại
{ 3x-1 = 1
* TH3:
{ 3y+1 = -2 <=> { y = -1
{ 3x-1 = -1 ------- { x = 0
* TH4:
{ 3y+1 = 1 <=> { y = 0
{ 3x-1 = 2 ------ { x = 1
tốm lại có 2 cặp số (x,y) thỏa mãn là: (0,-1) và (1,0)
~~~~~~~~~~~~~~
a) (x - 2)(x + 1) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy...
e) xy - 5x - 5y = 0
=> x(y - 5) - 5y = 0
=> x(y - 5) - 5(y - 5) - 25 = 0
=>(x - 5)(y - 5) = 25 = 1 . 25 = (-1) . (-25) = 5 . 5 = (-5). (-5) (và ngược lại)
Lập bảng :
x - 5 | 1 | 25 | -1 | -25 | 5 | -5 |
y - 5 | 25 | 1 | -25 | -1 | 5 | -5 |
x | 6 | 30 | 4 | -20 | 10 | 0 |
y | 30 | 6 | -20 | 4 | 10 | 0 |
Vậy ...