K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

Giải

Áp dụng t/c của dãy tỉ số = nhau:​​​​

=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=>\(\frac{a}{b}=1;\frac{b}{c}=1;\frac{c}{a}=1\)

=>\(a=b=c\)

=>\(b=c=2005\)

3 tháng 2 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{a+b+c}{a+b+c}=1\)(1)
\(\left(1\right)\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c=2005\)
Vậy b=c=2005
 

11 tháng 11 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=0\)(đk: a+b+c khác 0 )

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)

Mà a = 2005\(\Rightarrow a=b=c=2005\)

Vậy....

11 tháng 11 2018

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\)

\(\frac{b}{c}=1\Rightarrow b=c\)

\(\frac{c}{a}=1\Rightarrow c=a\)

\(\Rightarrow a=b=c\)

Mà a = 2005

=> b = c = 2005

=.= hok tốt!!

21 tháng 9 2018

Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))

1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)

2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)

Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)

17 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=1\)

\(\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)( 1 )

\(\frac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)( 2 )

\(\frac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}=2.2.2=8\)

17 tháng 10 2017

bạn cần gấp ko mình bt làm nè

13 tháng 7 2018

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c=2012\)

13 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b\)

\(b=c\)

\(c=a\)

\(\Rightarrow a=b=c\).Mà \(a=2012\)

\(\Rightarrow a=b=c=2012\)

11 tháng 10 2015

cái này chắc k ai làm đâu. mệt lắm

10 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\frac{a}{b}=1\) hay \(\frac{2018}{b}=1\), suy ra b = 2018
Tương tự, tính ra c = 2018.

Vậy b = 2018, c = 2018.