Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: CB=AD
a: Xét ΔABC vuông tại A và ΔCDA vuông tại C có
BC=AD
AC chung
Do đó:ΔABC=ΔCDA
b: Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
=>AB//CD và AB=CD
c: Xét ΔBEA vuông tại E và ΔDFC vuông tại F có
AB=DC
góc B=góc D
Do đó: ΔBEA=ΔDFC
=>BE=DF
- Bạn ơi đăng câu hỏi thì đăng cho rõ ràng nhé.
- Xét tam giác AMC và tam giác NMB có:
AM=MN (gt)
Góc AMC = Góc NMB (đối đỉnh).
BM=CM (M là trung điểm BC).
=>Tam giác AMC= Tam giác NMB (c-g-c).
=>BN=AC=AE (2 cạnh tương ứng).
Góc MBN= Góc ACB (2 góc tương ứng).
Mà góc ACB+góc ABC + Góc BAC =1800 (tổng 3 góc trong tam giác ABC).
=>Góc MBN+Góc ABC+Góc BAC=1800
=>Góc ABN+ Góc BAC =1800.
- Ta có: AM=MN nên M là trung điểm AN.
- Ta có: Góc DAE + Góc DAB+ Góc BAC + Góc EAC =3600
=>Góc DAE+Góc BAC+1800=3600.
=>Góc DAE+ Góc BAC=1800
Mà góc ABN+ Góc BAC =1800 (cmt)
=>Góc DAE=Góc ABN.
- Xét tam giác DAE và tam giác ABN có:
DA=AB (gt)
Góc DAE=Góc ABN (cmt)
AE=BN (cmt)
=> Tam giác DAE=Tam giác ABN (c-g-c)
=> DE=AN (2 cạnh tương ứng) mà AM=1/2 AN (M là trung điểm AN) nên AM=1/2 DE.
Cho tam giác ABC có A nhỏ hơn 90 độ M là trung điểm của BC trên nửa mặt phẳng có bờ AB không chứa điểm C Kẻ Ax vuông góc AB tren Ax lấy D sao cho AD =AB trên nửa mặt phẳng bờ AC không chứa điểm B Kẻ Ay vuông góc AC trên Ay lấy điểm E sao cho ae = AC Trên tia đối củaMA lấy N sao cho MN = MA Chứng minh rằng AM bằng 1/2 DE e và am bằng ô vuông góc với DE
Dùng hình của bạn Mai nhé.
Kẽ DP và EQ \(⊥\)HK tại P và Q.
Xét \(\Delta DPA\)và \(\Delta AHB\)có
\(\hept{\begin{cases}\widehat{DPA}=\widehat{AHB}=90\\DA=AB\\\widehat{PDA}=\widehat{HAB}\left(phu\widehat{PAD}\right)\end{cases}}\)
\(\Rightarrow\Delta DPA=\Delta AHB\)
\(\Rightarrow DP=AH\left(1\right)\)
Xét \(\Delta EQA\)và \(\Delta AHC\)có
\(\hept{\begin{cases}\widehat{EQA}=\widehat{CHA}=90\\EA=CA\\\widehat{QEA}=\widehat{HCA}\left(phu\widehat{QAE}\right)\end{cases}}\)
\(\Rightarrow\Delta EQA=\Delta AHC\)
\(\Rightarrow EQ=AH\left(2\right)\)
Từ (1) và (2) \(\Rightarrow DP=EQ\)
Xét \(\Delta DPK\)và \(\Delta EQK\)có
\(\hept{\begin{cases}\widehat{DPK}=\widehat{EQK}=90\\DP=EQ\\\widehat{DKP}=\widehat{EKQ}\end{cases}}\)
\(\Rightarrow\Delta DPK=\Delta EQK\)
\(\Rightarrow DK=EK\)
Vậy K là trung điểm của DE