Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)
\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)
\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)
Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)
B> \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(\left(x-\sqrt{x^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=-x+\sqrt{x^2+2013}\)
Chứng minh tương tự: \(x+\sqrt{x^2+2013}=-y+\sqrt{y^2+2013}\)
cộng vế theo vế ta được: \(x+y=-x-y\)
\(\Leftrightarrow x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2013}=-y^{2013}\)
\(\Leftrightarrow x^{2013}+y^{2013}=0\)
a,Ta có x =...
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3+1}-1}\right)}{\left(\sqrt{\sqrt{3}+1}\right)\left(\sqrt{\sqrt{3}-1}\right)}\)
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)
x = \(\frac{\sqrt{3}.2}{\sqrt{3}}\)
x = 2
sau đó thay x=2 vào A nhé.
A=2014 !!!
\(2,\)
\(a,\sqrt{x^2-4x+3}=3\)
\(\Rightarrow x^2-4x+3=9\)
\(\Rightarrow x^2-4x-6=0\)
\(\Rightarrow\left(x-2\right)^2=10\)
\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{10}\\x-2=-\sqrt{10}\end{cases}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}}\)
1/ \(\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)
\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}\)
\(=2\)
2/ ĐKXĐ: \(a^2-1\ge0\Rightarrow a^2\ge1\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)
3/ \(4\left|x\right|-\sqrt{\left(5x-1\right)^2}=4\left|x\right|-\left|5x-1\right|\)
\(=4x-\left(5x-1\right)=1-x\)
4/ \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}< \sqrt{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x< 7\end{matrix}\right.\) \(\Rightarrow0\le x< 7\)
5/ \(M=\sqrt{3-2\sqrt{2.3}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)
6/ \(\left|x\right|-\sqrt{\left(x-1\right)^2}=\left|x\right|-\left|x-1\right|=x-\left(x-1\right)=1\)
1.
\(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}\)
\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)
\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)
2.
\(\sqrt{a^2-1}\text{ xác định }\Leftrightarrow a^2-1\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+1\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)
3.
\(4\left|x\right|-\sqrt{1+25x^2-10x}\)
\(=4\left|x\right|-\sqrt{\left(5x-1\right)^2}\)
\(=4\left|x\right|-\left|5x-1\right|\)
\(=4x-5x+1=1-x\)
4.
ĐKXĐ: \(x\ge0\)
\(-\sqrt{x}>-\sqrt{7}\)
\(\Leftrightarrow\sqrt{x}< \sqrt{7}\)
\(\Leftrightarrow\text{ }x< 7\)
Vậy bât phương trình có nghiệm \(0\le x< 7\)
5.
\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{2}.\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}\)
6.
\(\left|x\right|-\sqrt{1-2x+x^2}\)
\(=\left|x\right|-\sqrt{\left(1-x\right)^2}\)
\(=\left|x\right|-\left|x-1\right|\)
\(=x-x+1=1\)
a.\(DK:\frac{2}{3}\le x< 4\)
b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\)
c.\(DK:x\le-3\)
Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn
Chưa học tới nên sai thì thoi nhé :)
\(a)\) ĐKXĐ : \(1-16x^2\ge0\)
\(\Leftrightarrow\)\(1^2-\left(4x\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(1+4x\right)\left(1-4x\right)\ge0\)
TH1 : \(\hept{\begin{cases}1+4x\ge0\\1-4x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{4}\\x\le\frac{1}{4}\end{cases}\Leftrightarrow}\frac{-1}{4}\le x\le\frac{1}{4}}\)
TH2 : \(\hept{\begin{cases}1+4x\le0\\1-4x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{-1}{4}\\x\ge\frac{1}{4}\end{cases}}\) ( loại )
Vậy ĐKXĐ : \(\frac{-1}{4}\le x\le\frac{1}{4}\)
Chúc bạn học tốt ~