Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: PN=10cm
b: Xét ΔPMK vuông tại M và ΔPEK vuông tại E có
PK chung
\(\widehat{MPK}=\widehat{EPK}\)
Do đó: ΔPMK=ΔPEK
c: Xét ΔMKD vuông tại M và ΔEKN vuông tại E có
KM=KE
\(\widehat{MKD}=\widehat{EKN}\)
DO đó: ΔMKD=ΔEKN
Suy ra: KD=KN
d: Ta có: PM+MD=PD
PE+EN=PN
mà PM=PE
và MD=EN
nên PD=PN
hayΔPDN cân tại P
a) Xét ΔPIM và ΔPIN có
PM=PN(gt)
PI chung
MI=NI(I là trung điểm của MN)
Do đó: ΔPIM=ΔPIN(c-c-c)
b) Ta có: PM=PN(gt)
nên P nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MI=NI(I là trung điểm của MN)
nên I nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra PI là đường trung trực của MN
hay PI\(\perp\)MN(đpcm)
c) Xét ΔPIM vuông tại I và ΔEIN vuông tại I có
PI=EI(gt)
IM=IN(I là trung điểm của MN)
Do đó: ΔPIM=ΔEIN(hai cạnh góc vuông)
nên PM=EN(hai cạnh tương ứng)
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
a: Xét ΔACI và ΔMCI có
CA=CM
\(\widehat{ACI}=\widehat{MCI}\)
Do đó: ΔACI=ΔMCI
Đề sai rồi bạn