K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

Thêm vào phần b) để cho đề rõ hơn nhé: "Tìm GTNN của : \(A=\frac{x^2}{9}+\frac{y^2}{5}\) biết \(\left(x+y\right)^2=196\)"

14 tháng 10 2018

biết Phùng MInh Quân ko

5 tháng 8 2016

Ta có \(\frac{A}{a}\) = \(\frac{B}{b}\) = \(\frac{C}{c}\) = k => A= ka; B= kb; C= kc

Vậy Q= \(\frac{kax+kby+kc}{ax+by+c}\) = \(\frac{k\left(ax+by+c\right)}{ax+by+c}\) = k

Giá trị này của Q không phụ thuộc vào x và y

11 tháng 8 2017

Yêu mình nha

28 tháng 6 2015

6) a) Vì tích của 3 số âm là số âm nên trong đó chắc chắn chứa ít nhất 1 số âm

Bỏ số âm đó ra ngoài. Còn lại 99 số . Chia 99 số thành 33 nhóm. Mỗi nhóm gồn 3 số 

=> kết quả mỗi nhóm là số âm

=> Tích của 99 số là tích của 33 số âm => kết quả là số âm

Nhân kết quả đó với số âm đã bỏ ra ngoài lúc đầu => ta được Tích của 100 số là số dương

28 tháng 6 2015

Bạn nên đăng từng bài lên thôi.

15 tháng 9 2019

Bài 1 : Sửa đề :

Tìm x,y,z 

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :

\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)

Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0

Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :

\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)

Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)

Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)

=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)

=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)

=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm

Tìm nốt bài cuối nhé 

23 tháng 9 2016

ta có \(\frac{1+5y}{5x}\)=\(\frac{1+7y}{4x}\)

=>      4x(1+5y)=5x(1+7y)

=>      4x+20xy=5x+35xy

=>      4x-5x    =35xy-20xy

=>      -x          =15xy

=>      -1          =15y

=>      y           =\(\frac{-1}{15}\)

có y roi thi có thể dễ dàng tìm được x=-2

15 tháng 9 2016

Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)

Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)

Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)

Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên

 

15 tháng 9 2016

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)

\(A>\frac{x+y+z}{x+y+z}\)

\(A>1\left(1\right)\)

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)

\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)

\(A< 2\left(2\right)\)

Từ (1) và (2) => 1 < A < 2

=> A không là số nguyên (đpcm)