Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(a,=4\sqrt{3}-10\sqrt{3}+8\sqrt{3}=2\sqrt{3}\\ b,=3-\sqrt{5}+\sqrt{5}-1=2\)
Câu 2:
\(a,ĐK:x\ge-2\\ PT\Leftrightarrow4\sqrt{x+2}-3\sqrt{x+2}+\sqrt{x+2}=6\\ \Leftrightarrow\sqrt{x+2}=3\Leftrightarrow x+2=9\Leftrightarrow x=7\left(tm\right)\\ b,\Leftrightarrow\left\{{}\begin{matrix}x+2y=1\\5y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)
Câu 3:
\(b,PTHDGD:2x-3=-x+3\Leftrightarrow x=2\Leftrightarrow y=1\Leftrightarrow A\left(2;1\right)\\ c,\Leftrightarrow A\left(2;1\right)\in\left(d_3\right)\Leftrightarrow2m-6+m=1\Leftrightarrow m=\dfrac{7}{3}\)
Bài 1:
\(A=\sqrt{14-6\sqrt{5}}=\sqrt{9-2.3\sqrt{5}+5}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}.\)
\(B=\sqrt{24}-5\sqrt{6}+\sqrt{216}=2\sqrt{6}-5\sqrt{6}+6\sqrt{6}=3\sqrt{6}.\)
Bài 2:
\(a.\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4.\) \(\left(ĐKXĐ:x\ge-5\right).\)
\(\Leftrightarrow\sqrt{4\left(x+5\right)}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9\left(x+5\right)}=4.\)
\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4.\)
\(\Leftrightarrow2\sqrt{x+5}=4.\Leftrightarrow\sqrt{x+5}=2.\Leftrightarrow x+5=4\Leftrightarrow x=-1\left(TM\right).\)
Vậy \(x=-1.\)
\(b.\left\{{}\begin{matrix}x-y=4.\\4x-y=6.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-4y=16.\\4x+y=6.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-y=4.\\-5y=10.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2.\\y=-2.\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;-2\right).\)
Bài 1:
\(a,x=3;y=\sqrt{10\cdot1,2}=\sqrt{12}=2\sqrt{3};z=\dfrac{\sqrt{5}\left(2\sqrt{3}-1\right)}{\sqrt{5}}=2\sqrt{3}-1\)
Ta có \(2\sqrt{3}-1=\sqrt{12}-1< \sqrt{16}-1=3\Leftrightarrow z< x\left(1\right)\)
Mà \(3=\sqrt{9}< \sqrt{12}=2\sqrt{3}\Leftrightarrow x< y\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow z< x< y\)
\(b,\Leftrightarrow3\left(\sin^2\alpha+\cos^2\alpha\right)+2\cos^2\alpha=4,5\\ \Leftrightarrow3\cdot1+2\cos^2\alpha=4,5\\ \Leftrightarrow\cos^2\alpha=\dfrac{3}{4}\Leftrightarrow\cos\alpha=\dfrac{\sqrt{3}}{2}\\ \Leftrightarrow\alpha=30^0\)
Câu 2:
\(a,ĐK:x\ge-2\\ BPT\Leftrightarrow3\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+2}< 12\\ \Leftrightarrow3\sqrt{x+2}< 12\\ \Leftrightarrow x+2< 16\Leftrightarrow x< 14\\ \Leftrightarrow-2\le x< 14\)
Vậy BPT có vsn trong khoảng \([-2;14)\)
\(b,HPT\Leftrightarrow\left\{{}\begin{matrix}3x-2y=7\\5x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x=8\\3x-2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Câu 3:
\(a,A=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}-2\sqrt{\dfrac{x\left(x-3\right)}{x}}\\ A=\dfrac{2x}{2}-2\sqrt{x-3}=x-2\sqrt{x-3}\\ x=7+2\sqrt{3}\Leftrightarrow A=7+2\sqrt{3}-2\sqrt{4+2\sqrt{3}}=7+2\sqrt{3}-2\left(\sqrt{3}+1\right)=5\)
\(b,A=x-2\sqrt{x-3}=x-3-2\sqrt{x-3}+1+2\\ A=\left(\sqrt{x-3}-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\sqrt{x-3}=1\Leftrightarrow x-3=1\Leftrightarrow x=4\left(tm\right)\)
Bài 5:
a: Xét (O) có
ΔDMN nội tiếp
MN là đường kính
Do đó: ΔDMN vuông tại D
Em tách nhỏ ra 1-2 bài/1 lượt hỏi nhá!
đó ạ em hỏi bài 4,5 thôi