Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(B=\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left(0,625-0,5+\frac{5}{11}+\frac{5}{12}\right)}+\frac{3\left(0,5+\frac{1}{3}-0,25\right)}{5\left(0,5+\frac{1}{3}-0,25\right)}\)
\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left[5\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)\right]}+\frac{3}{5}\)
\(=\frac{-3}{5}+\frac{3}{5}\)
\(=0\)
Bài 2:
b) Giải:
Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{c^6}{d^6}=\frac{3a^6+c^6}{3b^6+d^6}\) (1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^6=\left(\frac{a+c}{b+d}\right)^6=\frac{a^6}{b^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{3a^6+c^6}{3b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(đpcm\right)\)
cho a,b,c không âm a+b+c=3 CMR
\(\frac{a}{b^3+16}+\frac{b}{c^3+16}+\frac{c}{a^3+16}\ge\frac{1}{6}.\)
Ta có :
\(\frac{a}{b^3+16}=\frac{a}{16}-\frac{ab^3}{16\left(b^3+16\right)}\ge\frac{a+b+c}{16}-\frac{ab^2+bc^2+ca^2}{192}.\)(1)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)ta có:
\(\text{a(a−b)(b−c)≥0 ⇔abc+a^2b≥ab^2+ca^2}\)
Ta có: \(ab^2+bc^2+ca^2+abc\le bc^2+2abc+a^2b=b(a+c)^2\le\frac{4\left(a+b+c\right)^3}{27}=4\)(2)
Từ (1) và (2) suy ra dpcm
Dấu ''='' xảy ra khi (a,b,c)=(0,1,2)(a,b,c)=(0,1,2) cùng các hoán vị.
Gỉa sử \(a\ge b\ge c\)
Ta có:
\(b\le\frac{a+b+c}{3}\)(1)
\(\left(a+c\right)^2\le\left(\frac{2\left(a+b+c\right)}{3}\right)^2=\frac{4\left(a+b+c\right)^2}{9}\)(2)
nhân theo vế (1)(2) suy ra dpcm
\(VT=\frac{4}{2.2\sqrt{a+b}}+\frac{4}{2.2\sqrt{b+c}}+\frac{4}{2.2\sqrt{c+a}}\)
\(VT\ge\frac{4}{a+b+4}+\frac{4}{b+c+4}+\frac{4}{c+a+4}\)
\(VT\ge\frac{36}{a+b+4+b+c+4+c+a+4}=\frac{36}{24}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Dùng súng lục: "siêu tôc thần sầu" không đủ công lực tiếp nhận
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=\left(\frac{a}{a}+\frac{b}{b}+\frac{c}{c}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\\ \)
nhân phân phối bình thường ra thôi : \(t+\frac{1}{t}\ge2\)khi t>0 đẳng thức khi t=1
Áp vào trên => VT>=(1+1+1)+(2+2+2)=9
thay a+b+c=6 =>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{6}=\frac{3}{2}\) =>dpcm
đẳng thúc khi t=1=> a/b=b/c=a/c=> a=b=c
a+b+c=6=> a=b=c=2
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)
⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2
⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự
⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y
⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0
(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)
dấu = ⇔x=y=z⇔a=b=c
Ta có: \(ab+bc+ca+\frac{3\left(ab+bc+ca\right)}{a+b+c}\ge2\sqrt{\frac{3\left(ab+bc+ca\right)^2}{a+b+c}}\)
Lại có: \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)
\(\Rightarrow ab+bc+ca+\frac{3\left(ab+bc+ca\right)}{a+b+c}\ge2\sqrt{\frac{3.3abc\left(a+b+c\right)}{a+b+c}}=6\)
\(\Rightarrow1+\frac{3}{a+b+c}\ge\frac{6}{ab+bc+ca}\)(đpcm)
Dấu "=" xảy ra khi a=b=c=1
Đặt \(a+b+c=p;ab+bc+ca=q;abc=r\). Khi đó r = 1 và ta cần chứng minh \(1+\frac{3}{p}\ge\frac{6}{q}\)
Ta có: \(q^2\ge3pr=3p\Rightarrow p\le\frac{q^2}{3}\)
\(\Rightarrow1+\frac{3}{p}\ge1+\frac{9}{q^2}\)
Đến đây, ta cần chứng minh \(1+\frac{9}{q^2}\ge\frac{6}{q}\Leftrightarrow\left(q-3\right)^2\ge0\)(Đúng)
Đẳng thức xảy ra khi a = b = c = 1
áp dụng bất đẳng thức Cô-si
ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)
\(\Rightarrow dpcm\)
Bài này đúng rồi đấy. Còn sol hay thì anh không có.