Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu p = 2 thì p + 2 = 4 và p + 4 = 6 đều không phải là số nguyên tố.
Nếu p 3 thì số nguyên tố p có 1 trong 3 dạng: 3k, 3k + 1, 3k + 2 với k N*.
+) Nếu p = 3k p = 3 p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố.
+) Nếu p = 3k +1 thì p + 2 =3k+3-3
2. Giả sử b = 2
=> b + 2 = 2 + 2 = 4 ( không thoả mãn)
b = 3
=> b + 2 = 3 + 2 = 5, b + 4 = 3 + 4 = 7 ( thoả mãn)
=> b bằng 3 là một giá trị cần tìm
Xét b > 3 : Suy ra b có hai dạng 3k + 1 và 3k +2.
Với b có dạng 3k +1 => b + 2 = 3k +1 +2 = 3k + 3 chia hết cho 3 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Với b có dạng 3k + 2 => b + 4 = 3k +2 + 4 = 3k + 6 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Chứng tỏ mọi b lớn 3 đều không thoả mãn. Vậy b bằng 3 là giá trị cần tìm
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
Câu 1: 3;5;7
Câu 2:đề bài cho sai
Câu 3: Đáp số =2;3;5;7 vì 2+3+5+7=17
Câu 4: số 311141111 là số nguyên tố
số 1010101 là số nguyên tố
Đúng thì nhớ ko thì thôi
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
Bài 1: ba số tự nhiên lẻ liên tiếp đều là số nguyên tố là 3;5;7
Bài 1 :
Gọi 3 số đó là p ; p + 2 ; p + 4
+ Nếu p = 2 thì p + 2 = 2 + 2 = 4 là hợp số
+ Nếu p = 3 thì p + 2 = 3 + 2 = 5 ; p + 4 = 3 + 4 = 7 đều là số ng tố
Với p là số nguyên tố lớn hơn 3 thì p chỉ có dạng 3k + 1 hoặc 3k + 2
+ Nếu p = 3k + 2 thì p + 4 là hợp số ( loại )
+ Nếu p = 3k + 1 thì p + 2 là hợp số ( loại )
Vậy ba số ng tố đó là : 3 ; 5 ; 7
9 Tìm số nguyên tố p sao cho :
a) Nếu p = 2
=> p + 16 = 2 + 16 = 18 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 16 = 3 + 16 = 19 (số ngyên tố)
=> p + 38 = 3 + 38 = 41 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
b) Nếu p = 2
=> p + 28 = 2 + 28 = 30 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 28 = 3 + 28 = 31 (số ngyên tố)
=> p + 44 = 3 + 44 = 47 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 44 = 3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
c) Nếu p = 2
=> p + 26 = 2 + 26 = 28 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 42 = 3 + 42 = 45 (hợp số)
=> p = 3 (loại)
Nếu p = 5
=> p + 26 = 5 + 26 = 31 (số nguyên tố)
=> p + 42 = 5 + 42 = 47 (số nguyên tố)
=> p + 48 = 5 + 48 = 53 (số nguyên tố)
=> p + 74 = 5 + 74 = 79 (số nguyên tố)
=> p = 5 (chọn)
Nếu p > 5
=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))
Nếu p = 5k + 1
=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)5
=> p + 74 là hợp số
=> p = 5k + 1 (loại)
Nếu p = 5k + 2
=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5
=> p + 48 là hợp số
=> p = 5k + 2 (loại)
Nếu p = 5k + 3
=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5
=> p + 42 là hợp số
=> p = 5k + 3 (loại)
Nếu p = 5k + 4
=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5
=> p + 26 là hợp số
=> p = 5k + 4 (loại)
Vậy p = 5
10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
Ta có : a + a + 1 + a + 2 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên liên tiếp là hợp số
b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4
=> Ta có : a + a + 2 + a + 4 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số