K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

b: ΔBAE=ΔBHE

=>EA=EH

Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)

Do đó: ΔEAK=ΔEHC

=>EK=EC

=>ΔEKC cân ạti E

c: Xét ΔBKC có

KH,CA là các đường cao

KH cắt CA tại E

Do đó: E là trực tâm của ΔBKC

=>BE\(\perp\)KC

d: Ta có: EC=EK

mà EK>AK(ΔEAK vuông tại A)

nên EC>AK

9 tháng 2 2019

a, Xét tam giác ABE và tam giác HBE có

                AB=HB(gt)

               \(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)

                BE chung

\(\Rightarrow\)\(\Delta\)ABE=\(\Delta\)HBE(c.g.c)\(\Rightarrow\)\(\widehat{EAB}\)=\(\widehat{EHB}\)mà \(\widehat{EAB}\)=90 độ\(\Rightarrow\)\(\widehat{EHB}\)=90 độ

\(\Rightarrow\)EH vuông góc vs BC

31 tháng 1 2020

a) Vì BE là tia phân giác của tam giác ABC

=> \(\widehat{ABE}=\widehat{EBC}\)hay \(\widehat{ABE}=\widehat{EBH}\)

* Xét tam giác ABE và tam giác HBE có :

 + )BA = BH ( gt)

+) \(\widehat{ABE}=\widehat{EBH}\)  (cmt)

+)BE chung

=> tam giác ABE = tam giác HBE ( c-g-c)

-> \(\widehat{BAE}=\widehat{BHE}\)( hai cạnh tương ứng )

Mà \(\widehat{BAE}=90^0\)\(\widehat{BAC}=90^0\))

-> \(\widehat{BHE}=90^0\)

=> BH vuông góc EH hay BC vuông góc EH ( đpcm)

b) Vì tam giác ABE = tam giác HBE (cmt)

=> AE = EH ( 2 cạnh tương ứng )

* Có : AE = EH ( cmt)

=> Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A ( 1)

BA = BH ( gt )

=. Khoản cách từ điểm B đến điềm H bằng khoảng cách từ điểm B đến điểm A ( 2 )

Từ ( 1 ) và ( 2 ) => BE là đường trung trực của AH ( đpcm )

c) Vì tam giác ABC có \(\widehat{A}\)\(90^0\) ( gt)

=> AB vuông góc AC hay AE vuông góc AK ( E e AC ; K e AB )

=>\(\widehat{EAK}=90^0\)

Vì EH vuông góc AC ( cmt)

=> \(\widehat{EHC}=90^0\)

Xét tam giác AEK và tam giác HEC có 

AE = EH (cmt)

\(\widehat{EAK}=\widehat{EHC}=90^0\)

\(\widehat{AEK}=\widehat{HEC}\)(đối đỉnh)

=> tam giác AEK = tam giác HEC ( g-c-g)

=> EK = EC ( 2 cạnh tương ứng)

d) Có : BA = BH ( gt 0

=> tam giác BAH cân tại B

=. \(\widehat{BAH}=\frac{180^0-\widehat{ABH}}{2}\)( 3)

Vì tam giác AEK = tam giác HEC ( cmt )

=> AK = HC ( 2 cạnh tương ứng)

Có: AK = BA + AK

      BC = BH + HC

Mà BA = BH ( gt )

AK = HC ( cmt)

=> BK = BC

=> Tam giác BKC cân tại B

=>\(\widehat{BKC}=\frac{180^0-\widehat{KBC}}{2}\)hay \(\widehat{BKC}=\frac{180^0-\widehat{ABH}}{^{ }2}\)( 4 )

Từ ( 3 ) và ( 4 ) => \(\widehat{BAH}=\widehat{BKC}\)

Mà 2 góc ở vị trí đồng vị

=> AH // BC ( đpcm)

e) Có :  Tam giác BKC cân tại B

M là trung điểm BC 

=> BM là đường trung tuyến đồng thời là đường phân giác của tam giác BKC

Có BK là đường phân giác của tam giác BKC (cmt)

=> BK là đường phân giác của\(\widehat{KBC}\)hay \(\widehat{BAH}\)

Mà BE cũng là đường phân giác của \(\widehat{BAH}\)

=> BE trùng BK hay ba điểm B ; E ; K thẳng hàng ( đpcm)

8 tháng 3 2022

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

8 tháng 3 2022

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

7 tháng 3 2020

b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)

AB = 6; AC = 8

=> 6^2 + 8^2 = BC^2

=> BC^2 = 100

=> BC = 10 do BC > 0

Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A 

=> AM = BC/2

=> AM = 10 : 2 = 5 

b, xét tam giác BEC có : EM là trung tuyến

EM là đường cao

=> tam giác BEC cân tại E (định lí)

bạn ơi bài 2 nx giúp mk vs