Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
+)AM=AB-BM=6-3,75=2,25
+)MN//BC => \(\frac{AN}{AC}=\frac{AM}{AB}\)=> \(\frac{AN}{8}=\frac{2,25}{6}=\frac{3}{8}\)
=> AN=3(cm)
CN=AC-AN=8-3=5(cm)
b) +)MK//BI => \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right)\)
+) NK//CI => \(\frac{NK}{CI}=\frac{AK}{AI}\left(2\right)\)
(1)(2) => \(\frac{MK}{BI}=\frac{NK}{CI}\)mà MK=NK (K là trung điểm MN)
=> BI=CI => I là trung điểm BC
c) \(\Delta\)ABC vuông tại A
=> BC2=AB2+AC2=62+82=102 (Định lý Pytago)
=> BC=10cm
Ta có: \(\hept{\begin{cases}\frac{AN}{CN}=\frac{3}{5}\\\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\end{cases}\Rightarrow\frac{AN}{CN}=\frac{AB}{AC}=\frac{3}{5}}\)
=> BN là phân giác \(\widehat{ABC}\)
https://olm.vn/hoi-dap/detail/5736377385.html
bn vào đi ~
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)
=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)
=> \(CN=AC-AN=8-3=5\)
b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)
NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)
=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)
=> MK = KN => K là trung điểm của MN
c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)
=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)
Ta có: BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)
=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)
Lỗi không vẽ hình được nha bạn !!!
Bài 10 :
a) Qua B vẽ đường thẳng song song với AD cắt AC tại M .
Ta có : \(\widehat{B_1}=\widehat{A}_1,\widehat{M}=\widehat{A}_2,\)mà \(\widehat{A}_1=\widehat{A}_2\)
( vì AD là tia phân giác \(\widehat{BAC}\))
Suy ra \(\widehat{B}_1=\widehat{M},\)nên \(\Delta ABM\)cân đỉnh A .
Từ đó có AM = AB = c
\(\Delta ABM\)có MB < AM + AB = 2c
\(\Delta ADC\)có MB // AD ,nên \(\frac{AD}{MB}=\frac{AC}{MC}\)
( Hệ quả của định lí Ta - lét ) , do đó
\(AD=\frac{AC}{MC}.MB< \frac{AC}{AC+AM}.2c=\frac{2bc}{b+c}\)
b) Từ a) có \(\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)
Tương tự có \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right),\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bài 8 :
\(\widehat{D}_1=\widehat{D}_2\Rightarrow\frac{MA}{MB}=\frac{DA}{DB}\Leftrightarrow MA.DB=MB.DA\left(1\right)\)
Mặt khác AM . BD . CN = AN . CD . BM ( 2 )
Chia từng vế của các đẳng thức ( 1 ) và ( 2 ) ta được :
\(\frac{MA.DB}{AM.BD.CN}=\frac{MB.DA}{AN.CD.BM}\)
Rút gọn được \(\frac{1}{CN}=\frac{DA}{AN.CD}\) hay \(\frac{AN}{CN}=\frac{DA}{CD}\)
=> DN là tia phân giác của góc ADC
Bài 9 :
Ta tính được : BC = 10 cm => MC = 5cm ,áp dụng tính chất phân giác trong tam giác có :
\(\frac{AB'}{B'C}=\frac{AB}{AC}=\frac{6}{10}=\frac{3}{5}\)
\(\Rightarrow\frac{AB'}{3}=\frac{B'C}{5}=\frac{AC}{8}=1\Rightarrow AB'=3cm\)
B'C = 5cm
=> \(\Delta IMC=\Delta IB'C\left(c.g.c\right)\Rightarrow\widehat{IMC}=\widehat{IB'C}\)
\(\Rightarrow\widehat{AB'B}=\widehat{IMB}\)mà \(\widehat{B}_1=\widehat{B}_2\Rightarrow\widehat{BIM}=\widehat{BAC}=90^o\)
Vậy số đo góc BIM là 90o
Củng giống bạn ✰๖ۣۜŠɦαɗøω✰ thôi,nhưng để tránh spam mình sẽ gộp lại giúp bạn nhé !
Ảnh thứ 2 bạn vào TKHĐ của mình nhìn cho rõ nhé !