Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(A=4x^2-12x+9-\left(x^2+5x-x-5\right)+2\)
\(A=4x^2-12x+9-x^2-4x+5+2\)
\(A=3x^2-12x+16\)
\(A=3\left(x^2-4x+4\right)\)
\(A=3\left(x-2\right)^2\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow x=2\)
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(=4x^2-12x+9-\left(x^2+4x-5\right)+2\)
\(=4x^2-12x+9-x^2-4x+5+2\)
\(=3x^2-16x+16\)
\(=3\left(x^2-\frac{16}{3}x+16\right)\)
\(=3\left(x^2-2\cdot\frac{8}{3}\cdot x+\frac{64}{9}+\frac{80}{9}\right)\)
\(=3\left(x-\frac{8}{3}\right)^2+\frac{80}{3}\ge\frac{80}{3}\)
dấu = xảy ra \(\Leftrightarrow x-\frac{8}{3}=0\)
\(\Leftrightarrow x=\frac{8}{3}\)
vậy...
Bài 7
\(a,A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
\(b,B=x^2-x+1\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t\)
\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)
\(=t^2-36\)
\(\left(x^2+5x\right)^2-36\ge36\forall x\)
\(d,D=x^2+5y^2-2xy+4y-3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)
\(M=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)
a) Để M có nghĩa \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\)
Vậy \(x\ne2\)và \(x\ne0\)thì M có nghĩa
b) \(M=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)
\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)
\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3\)
\(=x\left(x-2\right)+3\)
\(=x^2-2x+3\)
c) Ta có: \(M=x^2-2x+3\)
\(=\left(x-1\right)^2+2\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+2\ge0+2;\forall x\)
Hay \(M\ge2;\forall x\)
Dấu'="xẩy ra \(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(M_{min}=2\)\(\Leftrightarrow x=1\)
Bài giải
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
\(=\left[\left(x-1\right)\left(x-6\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+10\)
\(=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)
Đặt \(x^2-7x+9=t\)
Khi đó \(A=\left(t-3\right)\left(t+3\right)+10=t^2+1\ge1\forall t\)
Dấu " = " xảy ra khi : \(x^2-7x+9=0\)