K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 10 2019

ĐKXĐ: \(x\ge0;x\ne1\)

\(G=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}.\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}-x\)

\(x=0,16\Rightarrow G=\sqrt{0,16}-0,16=\)

\(G=\frac{1}{4}-x+\sqrt{x}-\frac{1}{4}=\frac{1}{4}-\left(\sqrt{x}-\frac{1}{2}\right)^2\le\frac{1}{4}\)

\(\Rightarrow G_{max}=\frac{1}{4}\) khi \(\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)

G nguyên khi \(\sqrt{x}\) nguyên \(\Rightarrow x=k^2\) với \(k\in Z\)

Vậy với mọi x có dạng \(x=k^2\) thì G nguyên

\(G=\sqrt{x}\left(1-\sqrt{x}\right)\)

Với \(0< x< 1\Rightarrow0< \sqrt{x}< 1\Rightarrow1-\sqrt{x}>0\)

\(\Rightarrow G=\sqrt{x}\left(1-\sqrt{x}\right)>0\Rightarrow G\) dương

Để \(G< 0\Rightarrow1-\sqrt{x}< 0\Rightarrow x>1\)

a: ĐKXĐ: x>=0; x<>1

b: \(G=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{2}\cdot\left(\sqrt{x}-1\right)\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

c: Thay x=0,16 vào G, ta được:

\(H=-0,4\cdot\left(0,4-1\right)=-0,4\cdot0,3=-0,12\)