Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) *Xét x=0
==> Giá trị A=2022!(1)
*Xét 0<x≤2022
==> A=0(2)
*Xét x>2022
==> A≥2022!(3)
Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022
Mà để xmax ==> x=2022
Vậy ...
b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)
Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất
Mà x-2021≠0 =>x-2021=1==>x=2022
Khi đó Bmax=6057
Vậy...
Bài 8:
a) A = 2020 – |x + 3|
Có: |x + 3| ≥ 0
=> A ≤ 2020
Dấu ''='' xảy ra khi: |x + 3| = 0
=> x + 3 = 0
=> x = 0 - 3 = -3
Vậy: A sẽ đạt giá trị lớn nhất khi A = 2020 tại x = -3
b/ B = |x – 7| + 68
Có: |x – 7| ≥ 0
=> B ≥ 68
Dấu ''='' xảy ra khi: |x – 7| = 0
=> x - 7 = 0
=> x = 0 + 7 = 7
Vậy:.....
Bài 8
a , A = 2020 - | x + 3 |
Ta có \(\left|x+3\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+3\right|\le0\forall x\)
\(\Leftrightarrow2020-\left|x+3\right|\le2020\forall x\)
\(\Leftrightarrow A\le2020\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+3\right|=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy MaxA = 2020 \(\Leftrightarrow x=-3\)
b) B = | x - 7 | + 68
Ta có \(\left|x-7\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-7\right|+68\ge68\forall x\)
\(\Leftrightarrow B\ge68\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left|x-7\right|=0\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)
Vậy Min B = 68 \(\Leftrightarrow x=7\)
~ Học tốt
# Chiyuki Fujito
" Cho hỏi 𝑆 = (6𝑚2 .......)
thì là 6 . m . 2 hay là \(6m^2\) và mấy cái kia nx"
Ta có:I x+2I; I 2y - 10I lớn hơn hoặc bằng 0 vs mọi x
Để S nhỏ nhất thì Ix+2I; I 2y - 10I => x+2 = 0 và 2y-10 = 0 => x=-2 và y=5
Ta thấy |x + 2| ≥ 0 với mọi x
|2y - 10| ≥ 0 với mọi y
=> |x + 2| + |2y - 10| ≥ 0 với mọi x,y
=> |x + 2| + |2y - 10| + 1010 ≥ 1010 với mọi x,y
=> S ≥ 1010 với mọi x,y
Dấu " = " xảy ra
\(\Leftrightarrow\hept{\begin{cases}|x+2|=0\\|2y-10|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)
Vậy với x = -2 và y = 5 thì S đạt GTNN là 1010.
a) Do \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2008\ge2008\)
Dấu "=" xảy ra khi (x - 1)2 = 0 => x - 1 = 0 => x = 1
Vậy Min A = 2008 khi x = 1
b) Do \(\left|3-x\right|\ge0\Rightarrow1010-\left|3-x\right|\le1010\)
Dấu "=" xảy ra khi |3 - x| = 0 => 3 - x = 0 hoặc x - 3 = 0
=> x = 3
Vậy Max Q = 1010 tại x = 3
\(\left(x-1\right)^2+2008\ge2008\)
MIN \(=2008\Leftrightarrow x-1=0\)
\(\Rightarrow x=1\)
\(1010-\left|3-x\right|\le1010\)
MIn \(=1010\Leftrightarrow3-x=0\Rightarrow x=3\)