Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{MB}{EC}=\frac{DB}{MC}\)
\(\Leftrightarrow MB.MC=EC.DB\)
Mà tg ABC cân tại A => MC = MB
=> \(BM^2=BD.CE\)(đpcm)
b) Xét tg MDE và BDM
\(\widehat{MDE}=\widehat{BDM}\)(gt)
\(\widehat{MDB}=\widehat{EDM}\)(gt)
\(\Rightarrow\Delta MDE~\Delta BDM\)
a) \(\widehat{MDB}=\widehat{CME}\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta DBM;\Delta MCE\left(g.g\right)\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\)hay \(\frac{BM}{CE}=\frac{BD}{BM}\)(M là trung điểm BC)
\(\Rightarrow BM^2=BD.CE\)
b) \(\widehat{BMD}=\widehat{MEC}\)( \(\Delta DBM\)và \(\Delta MCE\)đồng dạng)
Mà BME là góc ngoài tam giác MEC
=> \(\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{MCE}=\widehat{BMD}+\widehat{MCE}\)
\(\Rightarrow\widehat{DME}=\widehat{MCE}=\widehat{MBA}\left(1\right)\)
Từ \(\Delta BDM;\Delta MCE\left(g.g\right)\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\)hay \(\frac{DM}{ME}=\frac{MC}{CE}\left(2\right)\)
Từ (1) và (2) => \(\Delta DME\Delta MCE\left(c.g.c\right)\)
Mà \(\Delta DBM\Delta MCE\left(g.g\right)\Rightarrow\Delta DBM~\Delta DME\)
a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(g-g)
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)(cmt)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED∼ΔHBC(c-g-c)
b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{EAD}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)