K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

Cho tam giác ABC cân ở A,Lấy các điểm D E theo thứ tự thuộc các cạnh AB AC,Chứng minh tam giác BDM đồng dạng với tam giác CME,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

ko thấy ảnh thì vào thống kê hỏi đáp của mk nha

28 tháng 5 2018

A B C M D E

a) \(\frac{MB}{EC}=\frac{DB}{MC}\)

\(\Leftrightarrow MB.MC=EC.DB\)

Mà tg ABC cân tại A => MC = MB

=> \(BM^2=BD.CE\)(đpcm)

b) Xét tg MDE và BDM

\(\widehat{MDE}=\widehat{BDM}\)(gt)

\(\widehat{MDB}=\widehat{EDM}\)(gt)

\(\Rightarrow\Delta MDE~\Delta BDM\)

28 tháng 5 2018

A B C D E M

a) \(\widehat{MDB}=\widehat{CME}\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta DBM;\Delta MCE\left(g.g\right)\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\)hay \(\frac{BM}{CE}=\frac{BD}{BM}\)(M là trung điểm BC)

\(\Rightarrow BM^2=BD.CE\)

b) \(\widehat{BMD}=\widehat{MEC}\)\(\Delta DBM\)và \(\Delta MCE\)đồng dạng)

Mà BME là góc ngoài tam giác MEC

=> \(\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{MCE}=\widehat{BMD}+\widehat{MCE}\)

\(\Rightarrow\widehat{DME}=\widehat{MCE}=\widehat{MBA}\left(1\right)\)

Từ \(\Delta BDM;\Delta MCE\left(g.g\right)\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\)hay \(\frac{DM}{ME}=\frac{MC}{CE}\left(2\right)\)

Từ (1) và (2) => \(\Delta DME\Delta MCE\left(c.g.c\right)\)

Mà \(\Delta DBM\Delta MCE\left(g.g\right)\Rightarrow\Delta DBM~\Delta DME\)

a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB∼ΔDHC(g-g)

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)

Xét ΔHED và ΔHBC có 

\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)(cmt)

\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔHED∼ΔHBC(c-g-c)

b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{EAC}\) chung

Do đó: ΔADB∼ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{EAD}\) chung

Do đó: ΔADE∼ΔABC(c-g-c)