Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tam giác AHB và tam giác CAB có:
góc AHB=góc BAC=90 độ
góc B chung
\(\Rightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\\ \Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)(chỗ này là câu b luôn nhé)
c)xét tam giác AHC và tam giá BAC có:
góc AHC=góc BAC=90 độ
góc C chung
\(\Rightarrow\Delta AHC\infty\Delta BAC\left(g.g\right)\\ \Rightarrow\dfrac{AC}{BC}=\dfrac{HC}{AC}\Rightarrow AC^2=HC\cdot BC\)
d)từ câu b)(hay câu a) ta có \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AH^2}{AC^2}=\dfrac{AB^2}{BC^2}\)(1)
từ câu c) ta có: \(\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow\dfrac{AH^2}{AB^2}=\dfrac{AC^2}{BC^2}\) (2)
từ (1) và (2) \(\Rightarrow\dfrac{AH^2}{AC^2}+\dfrac{AH^2}{AB^2}=\dfrac{AB^2}{BC^2}+\dfrac{AC^2}{BC^2}\\ \Leftrightarrow^{ }AH^2\left(\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\right)=\dfrac{AB^2+AC^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\\ \Leftrightarrow AH^2\left(\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\right)=1\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\)
a) xét tam giác HAC và tam giác ABC có
Góc H = Góc A (=90o)
Góc C chung
=> tam giác HAC ~tam giác ABC (g.g)
=>\(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)
=>AH.BC=AB.AC(đpcm)
b) Xét tam giác ABC và tam giác HBA có
Góc A=Góc H (=900)
Góc B chung
=>tam giác ABC ~tam giác HBA (g.g)
=>\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
=>AB2=BH.BC (1)
c)Tam giác HAC~ tam giác ABC (cmt)
=>\(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
=>AC2=HC.BC (2)
d) Từ (1) và (2) suy ra
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BC.BH}+\dfrac{1}{BC.CH}=\dfrac{CH+BH}{BC.BH.CH}=\dfrac{BC}{BC.BH.CH}=\dfrac{1}{BH.CH}\)=>\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BH.CH}\left(3\right)\)
Từ (1)và (3) suy ra
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)(đpcm)
d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó:ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)
a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)(đpcm)
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=15^2+20^2=625\)
=>\(BC=\sqrt{625}=25\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot25=15\cdot20=300\)
=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(3\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(4\right)\)
Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Do đó: ΔAMN đồng dạng với ΔACB
c: Ta có: ΔABC vuông tại A
mà AK là đường trung tuyến
nên AK=KC=KB
Ta có: KA=KC
=>ΔKAC cân tại K
=>\(\widehat{KAC}=\widehat{KCA}\)
Ta có: ΔAMN đồng dạng với ΔACB
=>\(\widehat{ANM}=\widehat{ABC}\)
Ta có: \(\widehat{KAC}+\widehat{ANM}\)
\(=\widehat{ABC}+\widehat{KCA}=90^0\)
=>AK\(\perp\)MN tại I
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)
=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)
=>BH=225/25=9(cm); CH=400/25=16(cm)
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM\cdot15=12^2\)=144
=>AM=144/15=9,6(cm)
Ta có: AMHN là hình chữ nhật
=>AH=MN
mà AH=12cm
nênMN=12cm
Ta có: ΔANM vuông tại A
=>\(AN^2+AM^2=NM^2\)
=>\(AN^2+9,6^2=12^2\)
=>AN=7,2(cm)
Xét ΔIMA vuông tại I và ΔAMN vuông tại A có
\(\widehat{IMA}\) chung
Do đó: ΔIMA đồng dạng với ΔAMN
=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)
=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)
hình bạn tự vẽ nhá :)
câu a
tam giác abc vuông tại a
\(=>S_{abc}=\dfrac{ab.ac}{2}=\dfrac{ah.bc}{2}\\ < =>2.S_{abc}=ab.ac=ah.bc\\ < =>ab.ac=ah.bc\)
câu b
xét tam giác hba và tam giác abc có
góc bha = góc bac = 90 độ
chung góc b
=> tam giác hba đồng dạng tam giác abc (gg) (1)
cmtt
=> tam giác hca đồng dạng với tam giác acb (2)
từ 1 và 2
=> tam giác hab đồng dạng tam giác hca (cùng động dạng tam giác abc) (3)
từ 1
\(\dfrac{ab}{bc}=\dfrac{bh}{ab}\\ =>ab.ab=bh.bc\)
câu c
từ 2
\(\dfrac{ac}{bc}=\dfrac{bh}{ac}\\ < =>ac.ac=bh.bc\)
câu d
từ 3
\(=>\dfrac{ah}{ch}=\dfrac{bh}{ah}\\ < =>ah.ah=ch.bh\)
có
\(\dfrac{1}{ah^2}=\dfrac{1}{ab^2}+\dfrac{1}{ac^2}\\ < =>\dfrac{1}{ah^2}=\dfrac{1}{bh.bc}+\dfrac{1}{ch.bc}\\ < =>\dfrac{1}{ah^2}=\dfrac{ch+bh}{bc.bh.ch}\\ < =>\dfrac{1}{ah^2}=\dfrac{bc}{bc.ah^2}\\ < =>\dfrac{1}{ah^2}=\dfrac{1}{ah^2}\)
=> đpcm
chúc may mắn :)