K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

Ta có :

\(\frac{1}{1^2}< \frac{1}{1.2};\frac{1}{2^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{50}< 1< 2\)

Vậy A < 2

24 tháng 4 2016

\(\frac{1}{1^2}=1\)

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(...\)

\(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< 1+1-\frac{1}{50}\)

\(\Rightarrow A< 2-\frac{1}{50}< 2\)

Vậy \(A< 2\)

 

22 tháng 1 2016

Có 4343 học sinh phân thành 88 loại điểm(từ 22 đến 99)

Giả sử trong 88 loại điểm đều là điểm của không quá 55 học sinhthì lớp học có:

5.8=405.5=40 học sinh,ít hơn 33 học sinh so với 4343.

theo ngyên lý Dirichlet tồn tại 66 học sinh có điểm kiểm tra bằng nhau

22 tháng 1 2016

Có 4343 học sinh phân thành  88 loại điểm(từ 22 đến 99)

Gỉa sử trong 88 loại điểm đều là điểm k quá 55 học sinh thì lớp học có:

5.8=40 học sinh ,ít nhất 33 học sinh so vs 4343 

Theo nguyên lí Dirichlet tồn tại 66 học sinh có điemr kiểm tra bằng nhau

13 tháng 3 2016

bài 2 :338350

25 tháng 12 2015

a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)

 (A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)

b) Bạn xem lại đề nhé

c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)

   = \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)

\(sin^4a+cos^4a+2sin^2a.cos^2a\)

\(\left(sin^2a+cos^2a\right)^2=1\)

6 tháng 4 2017

A) Ta có AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 100 - 36 => AB = 8cm

B) AM = BM (Do CM là trung tuyến của tam giác ABC)

CM = MD (Theo đề bài)

góc AMC = BMD (hai góc đối đỉnh)

=> Tam giác MAC = tam giác MBD (cgc)

=> AC = BD (Hai cạnh tương ứng của hai tam giác bằng nhau)

C) Ta có BC + BD > CD

=> BC + AC > 2 CM

31 tháng 12 2018

Theo cách giải lớp 8 :v

A B C M D

Lấy D đối xứng với A qua M . Ta có :

\(\left\{{}\begin{matrix}MA=MD\\MB=MC\end{matrix}\right.\Rightarrow ABCD\) là hình bình hành .

Mà có \(\widehat{A}=90^0\) nên ABCD là hình chữ nhật

\(\Rightarrow AD=BC\) ( Hình chữ nhật có 2 đường chéo bằng nhau )

Mặt khác \(AM=\dfrac{1}{2}AD\Rightarrow AM=\dfrac{1}{2}BC\left(đpcm\right)\)

25 tháng 1 2016

ABC vuông tại A thì ABC nội tiếp đường tròn đường kính BC

M là trung điểm BC => AM=BM=CM=R(bán kính đường tròn)

21 tháng 4 2017

C. Sông Gianh (Quảng Bình)

Sửa đề; BC=12cm

a: Xét ΔABD có \(\widehat{B}=\widehat{BAD}=60^0\)

nên ΔABD đều

=>BD=AB=6cm

=>BH=3cm

b: Ta có: BD+DC=BC

nên DC=BC-BD=12-6=6(cm)

Xét ΔDAC có DA=DC

nên ΔDAC cân tại D

c: Xét ΔABC có 

AD là đường trung tuyến

AD=BC/2

Do đó: ΔABC vuông tại A

21 tháng 2 2016

Giúp mik với khocroi

21 tháng 2 2016

l mẹ mi c

1:

=5x+2-6+x=6x-4

2: 

Sửa đề; DE vuông góc với BC

Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

hay BD là đường trung trực của AE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC