Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
Suy ra: DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Ta có: BE=BA
nên B nằm trên đường trung trực của EA(1)
Ta có: DE=DA
nên D nằm trên đường trung trực của EA(2)
Từ (1) và (2) suy ra BD là đường trung trực của EA
a: Xét ΔBAD vàΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
=>DE vuông góc BC
b: BA=BE
DA=DE
=>BD là trung trực của AE
=>BD vuông góc AE
c: AM//DE
DE vuông góc BC
=>AM vuông góc BC
AM//DE
=>góc MAE=góc AED
=>góc MAE=góc DAE
=>AE là phân giác của góc MAD
\(Xét.\Delta BDA.và.\Delta BDE.có\\\widehat{ABD} =\widehat{EBD}\\ BD.chung\\ BA=BE\\ \Rightarrow\Delta....=\Delta....\left(ch,gn\right)\\ \Rightarrow DA=DE\left(2.cạnh,tương,ứng\right)\\ b,\\ Ta.có.\Delta BDA=\Delta BDE\left(cmt\right)\\ \Rightarrow\widehat{A}=\widehat{E}\left(2.góc.tương.ứng\right)\\ mà.\widehat{A}=90^0\\ \Rightarrow\widehat{E}=90^0\\ \Rightarrow DE\perp BC\)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: BD=ED
b: Xét ΔBDK và ΔEDC có
\(\widehat{DBK}=\widehat{DEC}\)
BD=ED
\(\widehat{BDK}=\widehat{EDC}\)
Do đó: ΔBDK=ΔEDC
Suy ra: \(\widehat{AKD}=\widehat{ACD}\)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ta có: ΔABD=ΔEBD
nên DA=DE
mà BA=BE
nên BD là đường trung trực của AE
hay BD⊥AE
mình không biết vẽ hình nên bạn tự vẽ nha
a) có :BD là tia phân giác của góc ABC
=> góc ABD = góc DBC hay góc ABD = góc DBE
xét △ABD và △EBD có :
AB=EB
góc ABD = góc DBE
DB là cạnh chung
=> △ABD=△EBD(c.g.c)
b) có : △ABD=△EBD => AD=ED
=>D ∈ đường trung trực của EA
có AB=EB => B thuộc đường trung trực của EA
=> BD là đường trung trực của EA
=> BD⊥EA hay BH⊥EA
c) có : △ABD=△EBD => góc ADB= góc BDE(1)
có AK// BD
=> góc ADB= góc KAD(SLT)(2)
và góc AKD= góc BDE(ĐV)(3)
từ (1),(2),(3) => góc KAD= góc AKD
=> △ADK cân tại D
=> DA=DK
mà AD=DE =>DE=DK=AD
=> D là trung điểm của EK
d) có : góc BDA= góc DBC+góc C ( vì là góc ngoài) và góc ABD=góc DBC
=>góc DBA=góc ABD+góc C
=>góc DBA<góc ABD
trong △ABD có :góc DBA<góc ABD
=> AD<AB( quan hệ giữa cạnh và góc đối diện)
lại có AD=DK=DE
=> AB>DK
=>AB+AB>DK+DK
=>2AB>DK+DE
=>KE<2AB
nếu có chỗ sai mong thầy cô và các bạn trong hoc24 giúp mình sửa giúp để mình có thể giỏi hơn