K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

góc DCA chung

=>ΔCEB đồng dạng với ΔCDA
=>CE/CD=CB/CA

=>CE*CA=CD*CB; CE/CB=CD/CA

c: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot12=48\left(cm^2\right)\)

Xét ΔCED và ΔCBA có

CE/CB=CD/CA
góc C chung

=>ΔCED đồng dạng với ΔCBA

=>\(\dfrac{S_{CDE}}{S_{CBA}}=\left(\dfrac{DE}{AB}\right)^2=1\)

=>\(S_{CDE}=48\left(cm^2\right)\)

31 tháng 7 2023

a) \(\Delta ABE,\Delta ACF\) có \(\widehat{A}\) chung và \(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\) nên suy ra \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\).

b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó suy ra \(\Delta AEF~\Delta ABC\left(c.g.c\right)\) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)

c) Xét tam giác AEF có \(C\in AE,B\in AF,K\in EF\) và \(K,B,C\) thẳng hàng nên áp dụng định lý Menelaus, ta có \(\dfrac{KF}{KE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\)  (1).

 Mặt khác, cũng trong tam giác AEF, có \(C\in AE,B\in AF,I\in EF\) và AI, EB, FC đồng quy nên theo định lý Ceva, \(\dfrac{IF}{IE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\)   (2).

Từ (1) và (2), suy ra \(\dfrac{KF}{KE}=\dfrac{IF}{IE}\Leftrightarrow KF.IE=KE.IF\)

31 tháng 7 2023

\(\dfrac{ }{ }\)

a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔAEH\(\sim\)ΔBDH(g-g)

28 tháng 4 2022

a, Xét ΔDBAΔDBA và ΔABCΔABC có :

Góc B chung

Góc ADB = Góc BAC ( =90 o )

⇒ΔDBA=ΔABC(g−g)

b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )

=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Lại có :\(\dfrac{AD}{AC}=\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)

Suy ra : AD=\(\dfrac{AC.AB}{BC}\)=\(\dfrac{6.8}{10}\)=4,8(cm)

c, Ta có : BF là tia phân giác của góc B

=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\)(1)

BE là tia phân giác của góc B

=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)(2)

Mà \(\dfrac{DB}{AB}\)=\(\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)(3)

Từ (1), (2) và (3) suy ra :

\(\dfrac{FD}{FA}\)=\(\dfrac{EA}{EC}\)⇒FD.EC=EA.FA

AH
Akai Haruma
Giáo viên
28 tháng 4 2022

Bạn bị nhầm ở câu tính AD. 

\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AB+BC}=\dfrac{6}{6+10}=\dfrac{3}{8}\Rightarrow AD=\dfrac{3}{8}AC=3\)

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HE*HB

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

mà góc AFE+góc BFE=180 độ

nên góc AFE=góc ACB

c: Xét ΔKFB và ΔKCE có

góc KFB=góc KCE(=góc AFE)

góc K chung

=>ΔKFB đồng dạng với ΔKCE

=>KF/KC=KB/KE

=>KF*KE=KB*KC

 

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HE*HB

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

mà góc AFE+góc BFE=180 độ

nên góc AFE=góc ACB

c: Xét ΔKFB và ΔKCE có

góc KFB=góc KCE(=góc AFE)

góc K chung

=>ΔKFB đồng dạng với ΔKCE

=>KF/KC=KB/KE

=>KF*KE=KB*KC