Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)
\(\Rightarrow xy+yz+zx=0\)
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(=x^2+y^2+z^2+2.0\)
\(=x^2+y^2+z^2\left(đpcm\right)\)
B2) \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)
Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\)
\(\left(\frac{x}{a}+\frac{y}{b}\right)^2+2\left(\frac{x}{a}+\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)
\(\left(\frac{x}{a}\right)^2+2\frac{x}{a}\frac{y}{b}+\left(\frac{y}{b}\right)^2+\left(2\frac{x}{a}+2\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)
\(\frac{x^2}{a^2}+\frac{2xy}{ab}+\frac{y^2}{b^2}+\frac{2xz}{ac}+\frac{2yz}{bc}+\frac{z^2}{c^2}=1\)
\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\left(\frac{2xy}{ab}+\frac{2xz}{ac}+\frac{2yz}{bc}\right)=1\)
\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}\left(\frac{c}{z}+\frac{b}{y}+\frac{a}{x}\right)=1\)
\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}.0=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(ĐPCM\right)\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)
\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\frac{yz+xz+xy}{xyz}=0\)
yz + xz + xy = 0
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)
a) Từ giả thiết suy ra: xy + yz + zx = 0
Do đó:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)
Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra điều phải chứng minh
Bài 1:
a) Từ đkđb:
$x+y+z=0\Rightarrow x+y=-z; y+z=-x; z+x=-y$
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow xbc+yac+zab=0$
$a+b+c=0\Rightarrow a=-(b+c)\Rightarrow a^2=(b+c)^2$
$\Rightarrow a^2x=(b+c)^2x$.
Tương tự: $b^2y=(a+c)^2y; c^2z=(a+b)^2z$
Do đó:
$a^2x+b^2y+c^2z=(b+c)^2x+(a+c)^2y+(a+b)^2z=a^2(y+z)+b^2(z+x)+c^2(x+y)+2(xbc+yac+zab)$
$=a^2(-x)+b^2(-y)+c^2(-z)+2.0=-(a^2x+b^2y+c^2z)$
$\Rightarrow 2(a^2x+b^2y+c^2z=0$
$\Rightarrow a^2x+b^2y+c^2z=0$ (đpcm)
b)
\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \frac{x+y+z}{2}=ax+by+cz\)
\(\Rightarrow \left\{\begin{matrix} ax=\frac{x+y+z}{2}-x=\frac{y+z-x}{2}\\ by=\frac{x+y+z}{2}-y=\frac{x+z-y}{2}\\ cz=\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=\frac{y+z-x}{2x}\\ b=\frac{x+z-y}{2y}\\ c=\frac{x+y-z}{2z}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+1=\frac{y+z+x}{2x}\\ b+1=\frac{x+z+y}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)
\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\) (đpcm)
Bài 2:
Đặt $\frac{a_2}{a_1}=x; \frac{b_2}{b_1}=y; \frac{c_2}{c_1}=z$
Khi đó bài toán trở thành: Cho $x,y,z\neq 0$ thỏa mãn \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\)
CMR: $x^2+y^2+z^2=1$
-----------------------------------
Thật vậy:
Ta có: \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+yz+xz=0\\ x+y+z=1\end{matrix}\right.\)
Khi đó: $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=1^2-2.0=1$ (đpcm)
Vậy........
chịu khó lắm
Ok
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\frac{xbc+yac+zab}{abc}=1\)
\(\Rightarrow xbc+yac+zab=abc\)
\(\Rightarrow\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2+2.xbc.yac+2.yac.zab+2.xbc.zab=\left(abc\right)^2\)
\(\Rightarrow x^2b^2c^2+y^2a^2c^2+z^2a^2b^2+2abc\left(cxy+ayz+bxz\right)=\left(abc\right)^2\)
\(\Rightarrow x^2b^2c^2+y^2a^2c^2+z^2a^2b^2=a^2b^2c^2\)
\(\Rightarrow\frac{x^2b^2c^2+y^2a^2c^2+z^2a^2b^2}{a^2b^2c^2}=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)
\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy+ayz+bxz}{abc}\right)=1\)
Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{0}{abc}=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.0=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(dpcm\right)\)
Chúc bạn học tốt
1 cái T I C K nha cảm ơn