K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

Gọi thời gian người thứ nhất làm riêng để xong nửa công việc là x; thời gian người thứ hai làm riêng để xong nửa công việc là y (giờ; x, y > 0)

Nếu làm riêng, mỗi người nửa việc thì tổng thời gian 2 người làm là 12,5 giờ nên ta có phương trình: x + y = 12,5                   (1)

Thời gian người thứ nhất làm riêng để xong cả công việc là 2x, của người thứ 2 là 2y. Mà 2 người cùng làm thì trong 6 giờ xong việc nên ta có phương trình:

Vậy nếu làm riêng thì một người làm trong 2.7,5 = 15 giờ, còn người kia làm trong 2.5 = 10 giờ

Đáp án: D

19 tháng 4 2020

Gọi thời gian người 1 làm 1 mk xong cv là x ( h, x>6)

      thời gian người 2 làm 1 mk xong cv là y (h, y>6)

Trong 1h, người 1 làm đc \(\frac{1}{x}\left(cv\right)\)

                người 2 làm đc \(\frac{1}{y}\left(cv\right)\)

                cả 2 người cùng làm đc \(\frac{1}{6}\left(cv\right)\)

Do đó ta có pt: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\left(1\right)\)

Nếu làm riêng rẽ, mỗi người nửa cv thì người 1 làm xong cv trong \(\frac{1}{2}:\frac{1}{x}=\frac{x}{2}\left(h\right)\), người 2 làm xong cv trong \(\frac{1}{2}:\frac{1}{y}=\frac{y}{2}\left(h\right)\)

Khi đó tổng số giờ làm việc là 12h30' \(\left(=\frac{25}{2}h\right)\)nên ta có pt \(\frac{x}{2}+\frac{y}{2}=\frac{25}{2}\Leftrightarrow x+y=25\left(2\right)\)

Từ (1)(2) ta có hpt \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\\x+y=25\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=25-y\\\frac{1}{25-y}+\frac{1}{y}=\frac{1}{6}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=25-y\\6y-6y+150=25y-y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=25-y\\150-25y+y^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=25-y\\\left(10-y\right)\left(15-y\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=10;x=15\\y=15;x=10\end{cases}}\left(TMĐK\right)\)

Vậy thời gian 2 người làm 1 mk xog cv lần lượt là 10h và 15h hoặc 15h và 10h

2 tháng 10 2021

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

 

24 tháng 6 2017

Gọi thời gian người thứ nhất làm riêng xong công việc là x(giờ)

Gọi thời gian người thứ hai làm riêng xong công việc là y(giờ)

Điều kiện: x; y > 0

Trong 1 giờ người thứ nhất làm được 1/x (công việc)

Trong 1 giờ người thứ hai làm được 1/y (công việc)

Vì hai người làm chung trong 15 giờ được 1/6 công việc nên ta có phương trình:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vì người thứ nhất làm một mình trong 12 giờ và người thứ hai làm một mình trong 20 giờ được 1/5 công việc nên ta có phương trình:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Từ (1) và (2) ta có hệ phương trình:

Vậy người thứ nhất làm riêng xong công việc trong 360 giờ; người thứ hai làm riêng xong công việc trong 120 giờ.

Gọi thời gian làm riêng của người thứ nhất và thứ hai lần lượt là x,y

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{5}{4}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{y}=\dfrac{67}{60}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

=>Đề sai rồi bạn

19 tháng 5 2022

Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )

Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)