K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2022
10 tháng 5 2018 lúc 20:51  

a) Diện tích đáy hình hộp chữ nhật: 

AB.AC=10.20=200(cm2)AB.AC=10.20=200(cm2)

Thể tích hình hộp chữ nhật:

V=S.h=200.15=3000(cm3)V=S.h=200.15=3000(cm3)

b) tam giác A'B'C' vuông tại B. Áp dụng định lý PITAGO ta có:

AC=AB2+BC2=102+202=105(cm)A′C′=A′B′2+B′C′2=102+202=105(cm)

AC=AA+AC2=152+102.5=529(cm)

14 tháng 6 2021

a) Áp dụng định lý Pytago, ta được:

AC2=AB2+BC2=2AB2AC2=AB2+BC2=2AB2

⇒AC=AB√2=10√2cm⇒AC=AB2=102cm

b) Gọi MM là trung điểm ABAB

⇒MA=MB=MO=5cm⇒MA=MB=MO=5cm

⇒SM⊥AB⇒SM⊥AB (ΔSAB∆SAB cân tại SS)

⇒SM=√SA2−AM2=√122−52=√119cm⇒SM=SA2−AM2=122−52=119cm

⇒SO=√SM2−OM2=√119−52=√94cm⇒SO=SM2−OM2=119−52=94cm

⇒VS.ABCD=13.SABCD.SO=13.AB2.SO=102.943=94003cm3

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.a) Tìm các tam giác đồng dạng với tam giác BDH.b).Tính độ dài HD, BHc).Tính độ dài HEBài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:a) BH.BD = BK.BCb)CH.CE = CK.CBc) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung...
Đọc tiếp

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.

a) Tìm các tam giác đồng dạng với tam giác BDH.

b).Tính độ dài HD, BH

c).Tính độ dài HE

Bài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:

a) BH.BD = BK.BC

b)CH.CE = CK.CB

c) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung điểm của BC.Chứng minh: H ; M ; Q thẳng hàng.

Bài 8 :  Cho tam giác ABC cân tại A ; trên BC lấy điểm M , vẽ ME ; MF vuông góc với AC ; A
B.kẻ đường cao CH. Chứng minh:

a) Tam giác BFM đồng dạng với tam giác CEM.

b) Tam giác BHC và tam giác CEM đồng dạng.

c) ME + MF không đổi khi M di động trên BC.

Bài 9:  Cho hình hộp chữ nhật ABCDA’B’C’D’ có AB = 10cm  ; BC = 20 cm  ; AA’  = 15cm.

a)   Tính thể tích hình hộp chữ nhật.

b) Tính độ dài đường chéo AC’ của hình hộp chữ nhật.

Bài 10: Cho hình chóp tứ giác đều S .ABCD có cạnh đáy AB = 10 cm ; cạnh bên SA = 12 cm.

Tính :  a) Đường chéo AC

b) Tính đường cao SO và thể tích hình chóp.

0
15 tháng 6 2021