Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tứ giác CDFE có
EF // CD (cùng vuông góc AB)
=> góc DEF= góc EDC (1)
gọi M là giao điểm AB và CD. AB vuông góc CD => M là trung điềm CD
.........=> góc ACD = góc ADC (2)
(1),(2) => góc DEF= góc EDC => CDFE nội tiếp
b) ta có CDFE nội tiếp (cmt) => góc ECF = góc EDF =90 độ (3)
góc ADB =90 độ (góc nội tiếp chắn nửa đường tròn)(4)
(3),(4) => góc EDF + góc ADB =180 độ
=> B,D,F thẳng hàng.
c) ta có tứ giác EHAC có góc H + góc C=180 độ
=> EHAC nội tiếp
=> góc HCA = góc HEA
mà góc HEA=góc ADC(cmt)
mà góc ADC=góc ABC (=1/2sđ cung AC)
=>góc HCA=ABC
=> HC là tiếp tuyến của đường tròn tâm (O)
REFER :
a) Xét tứ giác CDFE có
EF // CD (cùng vuông góc AB)
=> góc DEF= góc EDC (1)
gọi M là giao điểm AB và CD. AB vuông góc CD => M là trung điềm CD
.........=> góc ACD = góc ADC (2)
(1),(2) => góc DEF= góc EDC => CDFE nội tiếp
b) ta có CDFE nội tiếp (cmt) => góc ECF = góc EDF =90 độ (3)
góc ADB =90 độ (góc nội tiếp chắn nửa đường tròn)(4)
(3),(4) => góc EDF + góc ADB =180 độ
=> B,D,F thẳng hàng.
c) ta có tứ giác EHAC có góc H + góc C=180 độ
=> EHAC nội tiếp
=> góc HCA = góc HEA
mà góc HEA=góc ADC(cmt)
mà góc ADC=góc ABC (=1/2sđ cung AC)
=>góc HCA=ABC
=> HC là tiếp tuyến của đường tròn tâm (O)
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)
Xét tứ giác EHAC có
\(\widehat{EHA}\) và \(\widehat{ECA}\) là hai góc đối
\(\widehat{EHA}+\widehat{ECA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: EHAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: \(\widehat{HEC}+\widehat{HAC}=180^0\)(hai góc đối)
mà \(\widehat{HAC}+\widehat{BAC}=180^0\)(Hai góc kề bù)
nên \(\widehat{HEC}=\widehat{CAB}\)(Đpcm)
Em cần câu b