K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4

Gọi d = ƯCLN(14n + 3; 21n + 4)

⇒ (14n + 3) ⋮ d và (21n + 4) ⋮ d

*) (14n + 3) ⋮ d

⇒ 3(14n + 3) ⋮ d

⇒ (42n + 9) ⋮ d (1)

*) (21n + 4) ⋮ d

⇒ 2(21n + 4) ⋮ d

⇒ (42n + 8) ⋮ d (2)

Từ (1) và (2) ⇒ (42n + 9 - 42n - 8) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy phân số đã cho là tối giản

26 tháng 4

Gọi 𝑑= ƯCLN(14𝑛+3,21𝑛+4).

Có 14𝑛+3 chia hết cho d và 21𝑛+ 4 chia hết cho 𝑑.

Từ đó suy ra: 3.(14𝑛+3)−2.(21𝑛+4)=1 chia hết cho 𝑑.

Vậy 𝑑= 1 hay \(\dfrac{14n+3}{21n+4}\)14𝑛+321𝑛+4
 là phân số tối giản.

1 tháng 5 2021

Giả sử UCLN(14n+3;21n+5)=d

14n+3 chia hết cho d nên 42n+9 chia hết cho d

21n+5 chia hết cho d nên 42n+10 chia hết cho d

vay 1 chia hết cho d, d=1

Vậy phân số tối giản

Giải:

Gọi ƯC(14n+3;21n+5)=d

⇒14n+3 ⋮ d              ⇒3.(14n+3) ⋮ d            ⇒42n+9 ⋮ d

    21n+5 ⋮ d                2.(21n+5) ⋮ d               42n+10 ⋮ d

⇒(42n+10)-(42n+9) ⋮ d

⇒   1 ⋮ d

⇒d=1

Vậy 14n+3/21n+5 là phân số tối giản.

Chúc bạn học tốt!

Gọi d=ƯCLN(14n+3;21n+5)

=>42n+9-42n-10 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

11 tháng 5 2023

ừm...PSTG là gì ạ???

số 9 và số 10 là từ đâu ạ?

12 tháng 1 2022

Gọi ƯCLN 21n + 4 và 14n + 3 là d ( d ∈ N và d ≥ 1 )

Khi đó:  2 ( 21n + 4 ) ⋮ d  và 3 ( 14n + 3 ) ⋮ d

hay 42n + 8 ⋮ d    và 42n + 9 ⋮ d

Suy ra   42n + 9 - 42n + 8 ⋮ d   ⇒ 1 ⋮ d

Vậy d = 1 

Như vậy phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với n là số tự nhiên

Gọi d=UCLN(14n+3;21n+4)

\(\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: 14n+3/21n+4 là phân số tối giản

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

24 tháng 8 2015

gọi d là ƯCLN của 21n+4 và 14n+3

=> 21n+4 chia hết cho d  =>2.(21n+4) chia hết cho d

     14n+3 chia hết cho d  =>3.(14n+3) chia hết cho d

=> (42n+9)-(42n+8) chia hết cho d

=> 42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=> d thuộc Ư(1)={1}

=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)

27 tháng 1 2017

Khó nhỉ

20 tháng 5 2016

gọi d là UCLN (21n+4;14n+3)

ta có:

[3(14n+3]-[2(21n+4)] chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1

=>phân số trên tối giản vs mọi n

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

19 tháng 2 2016

Để cm 21n+4/14n+3 tối giản thì ta phải cm 21n + 4 ;2n + 3 là nguyên tố cùng nhau

Ta gọi d là ƯCLN ( 21n + 4 ; 14n + 3 )

=> 21n + 4 ⋮ d => 2.( 21n + 4 ) ⋮ d => 42n + 8 ⋮ d ( 1 )

=> 14n + 3 ⋮ d => 3.( 14n + 3 ) ⋮ d => 42n + 9 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 42n + 9 ) - ( 42n + 8 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 21n + 4 ; 12n + 3 ) = 1 nên 21n + 4 và 12n + 1 là nguyên tố cùng nhau

=> 21n+4/14n+3 là p/s tối giản

19 tháng 2 2016

giả sử (21n+4)/(14n+3) là phân số không tối giản 
=> tồn tại d > 1 là ước số chung của (21n+4) và 14n+3) 
hay (21n+4) và 14n+3) cùng chia hết cho d > 1 
=> 3(14n +3) - 2(21n + 4) = 1 chia hết cho d > 1 vô lý 
=> đpcm

DD
8 tháng 11 2021

Đặt \(\left(14n+3,21n+5\right)=d\).

Suy ra 

\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

23 tháng 4 2023

Khó dữ zậy

Gọi \(d=ƯC\left(14n+17;21n+25\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(14n+17;21n+25\right)=1\)

hay phân số \(B=\dfrac{14n+17}{21n+25}\) là phân số tối giản(Đpcm)

5 tháng 5 2019

   Gọi d = ƯCLN ( 14n + 3 , 21n + 5 ) 

Xét hiệu :

   \(\left(21n+5\right)-\left(14n+3\right)⋮d\)

   \(2\left(21n+5\right)-3\left(14+3\right)⋮d\)

   \(42n+10-42n-9⋮d\)

                     \(10-9⋮d\)

                               \(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\)

\(\RightarrowƯ\left(1\right)=1\Rightarrow d=1\)

                                         Vậy....

                                                       #Louis

5 tháng 5 2019
To cung giong ban